\(2x^2-4mx+2m^2-1=0\)

Tìm m để \(2x_1+4mx_...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Ta có : \(\Delta=\left(2m-1\right)^2+1>0\)

nên pt luôn có 2 nghiệm phân biệt là x1 và x2 

Theo ĐL Vi-ét ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=\frac{2m-1}{2}\end{cases}}\)=> \(4m^2=x_1^2+2x_1x_2+x_2^2\) => \(2m^2=\frac{x_1^2+2x_1x_2+x_2^2}{2}\)

=> tìm m để thoả mãn \(2x_1^2+2\cdot2mx_2+2m^2-9=2x_1^2+2\left(x_1+x_2\right)\cdot x_2+\frac{x_1^2+2x_1x_2+x_2^2}{2}-9< 0\)

<=> \(4x_1^2+4x_1x_2+4x_2^2+x_1^2+2x_1x_2+x_2^2-18< 0\)

<=> \(5x_1^2+6x_1x_2+5x_2^2-18< 0\)

<=> \(3\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-18< 0\)

<=> \(2m\left(6m+2\right)-18< 0\)

Bn tự giải tiếp nha :D

4 tháng 7 2020

Theo hệ thức viet thì : \(\hept{\begin{cases}x_1x_2=2m+1\\x_1+x_2=6\end{cases}}\)

Khi đó : \(\hept{\begin{cases}2x_1-x_2=15\left(1\right)\\x_1^2=x_2-4\end{cases}}\)\(< =>\hept{\begin{cases}2x_1-15=x_2\\x_1^2=2x_1-19\left(2\right)\end{cases}}\)

Đặt \(x_1;x_2\)lần lượt là \(a,b\)(mình đặt cho dễ ghi thôi nhé)

\(\left(2\right)< =>a^2-2a-19=0\)

\(< =>\orbr{\begin{cases}a=1+2\sqrt{5}\left(+\right)\\a=1-2\sqrt{5}\left(++\right)\end{cases}}\)

Với \(\left(+\right)\)thế vào \(\left(1\right)\)ta được \(2a-b=15\)

\(< =>2+4\sqrt{5}-15=-13+4\sqrt{5}=b\)

Từ  cặp số trên thế vào phương trình sẽ tìm được m theo dạng bpt (+++)

Với \(\left(++\right)\)thế vào \(\left(1\right)\)ta được : \(2a-b=15\)

\(< =>2-4\sqrt{5}-15=-13-4\sqrt{5}=b\)

Từ cặp số trên thế vào phương trình sẽ tìm được m theo dạng bpt (++++)

Từ 3 và 4 suy ra kết luận 

P/s : Mình không chắc dạng này lắm , sai mong bạn thông cảm

Ta có : \(2x^2+\left(2m-1\right)x+m-1=0\left(a=2;b=2m+1;c=m-1\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-2m-1}{2};x_1x_2=\frac{m-1}{2}\)

Theo bài ra ta có : \(2x_1-3x_2=1\)Ta có hệ sau : 

\(\hept{\begin{cases}2x_1-3x_2=1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}2x_1-3x_2=1\\3x_1+3x_2=\frac{-2m-1}{2}\end{cases}}}\)

\(\hept{\begin{cases}5x_1=-2m+1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-2m+1}{5}\left(1\right)\\x_1+x_2=\frac{-2m-1}{2}\left(2\right)\end{cases}}\)

Thay \(x_1\)vào pt 2 ta có : \(\frac{-2m+1}{5}+x_2=\frac{-2m-1}{2}\)

\(\Leftrightarrow\frac{-4m+2}{10}+\frac{10x_2}{10}=\frac{-10m-5}{10}\)Khử mẫu ta có pt mới : \(-4m+2+10x_2=-10m-5\)

\(10x_2=-6m-7\Leftrightarrow x_2=\frac{-6m-7}{10}\)

Vì \(x_1x_2=\frac{m-1}{2}\)nên \(\frac{-6m-7}{10}.\frac{-2m+1}{5}=\frac{12m^2+8m-7}{50}\)

Đặt \(\frac{12m^2+8m-7}{50}=\frac{m-1}{2}\Leftrightarrow\frac{12m^2+8m-7}{50}=\frac{25m-25}{50}\)

Khử mẫu ta ddc : \(12m^2+8m-7-25m+25=0\)

\(\Leftrightarrow12m^2-17m+18=0\) Ta có : \(\Delta=\left(-17\right)^2-4.12.18=289-864< 0\)

Sai đâu tớ chịu :v 

14 tháng 7 2020

Bạn sai rồi kìa Theo viet có tổng 2 nghiệm bằng -b chia a

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
19 tháng 3 2022

a= 1; b= -2m; b'=-m; c=2m-10

+) Xét: Δ'=b'2-ac=(-m)2-(2m-10)=m2-2m+10=m2-2m+1+9=(m-1)2+9

Vì (m-1)2≥0 nênΔ'=(m-1)2+9>0, nên PT luôn có 2 nghiệm phân biệt với mọi m

+) Theo Viet ta có:

S=x1+x2=2m (1)

P=x1.x2=2m-10 (2)

Mà đề bài ta có: 2x1+x2=-4 (3)

Trừ vế với vế của (3) cho (1) ta có: x1= -4-2m

*) Thay x1= -4-2m vào (1) ta được x2=4m+4

*) Thay x1= -4-2m; x2=4m+4 vào (2) ta có:

P= (-4-2m).(4m+4 )=2m-10

⇔-16m-16-8m2-8m=2m-10

⇔-8m2-26m-6=0

⇔m=\(\dfrac{-1}{4}\) và m=-3 (TM)

Vậy với m=\(\dfrac{-1}{4}\) và m=-3 thì tman đề bài