K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

1 tháng 2 2016

a) ĐK: x-1 khác 0 và x+1 khác 0

<=> x khác 1 và x khác -1

b) ĐK: x-2 khác 0

<=> x khác 2

1 tháng 2 2016

à thui câu 1 k cần lm lm hộ câu 2 nha

26 tháng 1 2016

\(t^2+\left(3+\sqrt{3}\cos2x\right)t+\left(\sqrt{3}\cos2x+\frac{1}{2}\right)=0\)

\(\Delta=9+6\sqrt{3}\cos2x+3\cos^22x-4\sqrt{3}\cos2x-2=7+2\sqrt{3}\cos2x+3\cos^22x=6+\left(\sqrt{3}\cos2x+1\right)^2\)

t=

26 tháng 1 2016

ohochịu

a: \(F\left(x\right)=x^4+6x^3+2x^2+x-7\)

\(G\left(x\right)=-4x^4-6x^3+2x^2-x+6\)

b: h(x)=f(x)+g(x)

\(=x^4+6x^3+2x^2+x-7-4x^4-6x^3+2x^2-x+6\)

\(=-3x^4+4x^2-1\)

c: Đặt h(x)=0

\(\Leftrightarrow3x^4-4x^2+1=0\)

\(\Leftrightarrow\left(3x^2-1\right)\left(x^2-1\right)=0\)

hay \(x\in\left\{1;-1;\dfrac{\sqrt{3}}{3};-\dfrac{\sqrt{3}}{3}\right\}\)

6 tháng 10 2015

ta có \(5^{x^2}\ge1\) với mọi x

mà \(cos^4x+sin^4x=1-2sin^2xcos^2x\le1\) với mọi x

dầu bằng xảy ra khi \(5^{x^2}=1\Rightarrow x^2=0\Rightarrow x=0\)

khi x=0 thì \(cos^4x+sin^4x=1\)

vậy nghiệm của pt x=0

 

AH
Akai Haruma
Giáo viên
17 tháng 2 2017

Lời giải:

Điều kiện \(x\geq 0\)

\(\text{PT}\Leftrightarrow 2(x^2+2x+4)=3\sqrt{4x(x^2+4)}\)

Áp dụng bất đẳng thức AM-GM:

\(2(x^2+2x+4)=3\sqrt{4x(x^2+4)}\leq 3\left (\frac{4x+x^2+4}{2}\right)\)

\(\Rightarrow 4(x^2+2x+4)\leq 3(x^2+4x+4)\Leftrightarrow (x-2)^2\leq 0\)

Ta biết rằng \((x-2)^2\geq 0\forall x\in\mathbb{R}\) nên dấu bằng xảy ra khi \(x=2\)

Vậy \(x=2\) là nghiệm của phương trình.