Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2*x=\(2^x+x^2\)=100 \(\Rightarrow\)x\(^2\)\(\le\)99
Vì \(2^x\)là số chẵn , 100 cũng là số chẵn
\(\Rightarrow\)\(x^2\)cũng là số chẵn \(\Rightarrow\)2\(\le\)x\(\le\)8
Ta thử lần lượt các trường hợp thì thấy x=6 thì hợp lí
Vậy x=6
Trong các khẳng định sau, khẳng định sai là
:A. Tổng của hai số hữu tỉ dương là một số hữu tỉ dương.
B. Tổng của hai số hữu tỉ trái dấu là một số hữu tỉ âm
.C. Hai số hữu tỉ đối nhau có tổng bằng 0
.D. Phép trừ luôn thực hiện được trong ???????? .
\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Vậy M>1 (1) (Đề sai )
b)\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
\(\frac{b}{a+c}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)
\(\Rightarrow M< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
=>M<2 (2)
+)Từ (1) và (2)
=>M không phải là ssoos nguyên
Chúc bạn học tốt
Với a, b là số nguyên dương sao cho : a+1 và b+2007 chí hết cho 6.
CM: 4^a+a+b chí hết cho
giúp mk vs
chia mk ghi nhầm thành chí, mong các bn thông cảm nha ^-^!!!!!!!!!