Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
ta có x^2 -4 = (x-2)(x+2)
đkxđ của C là x khác 2 và trừ 2
\(\frac{x^3}{x^2-4}\)- \(\frac{x}{x-2}\)- \(\frac{2}{x+2}\)= \(\frac{x^3}{\left(x-2\right)\left(x+2\right)}\)- \(\frac{x}{x-2}\)- \(\frac{2}{x+2}\)
= \(\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)
= \(\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)
= \(\frac{\left(x^2-4\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)= \(\frac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)= x- 1
để C = 0 => x-1 = 0
=> x= 1 ( thỏa mãn điều kiện xác định)
c, để C dương
=> x-1 dương
=> x-1 >0
=> x>1
a) Để biểu thức xác định \(\Rightarrow\hept{\begin{cases}x^2-4\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Rightarrow x\ne2;-2\)
Vậy ...
b) \(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-\left(x^2+2x\right)-\left(2x-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^3-x^2\right)-\left(4x-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2-4\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 \(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Vậy ...
c) Để C > 0 thì \(x-1>0\Rightarrow x>1\)
Vậy ...
a) ĐKXĐ:\(x\ne\pm2\)
b)\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{x^2-4}-\frac{x^2+2x}{x^2-4}-\frac{2x-4}{x^2-4}=\frac{x^3-x^2-4x+4}{x^2-4}\)
\(=\frac{x^2\left(x-1\right)-4\left(x-1\right)}{x^2-4}=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}=x-1\)
Với C=0 <=> x-1=0 <=> x=1
c) C nhận giá trị dương <=> x-1>0 <=> x>1
a,ĐKXĐ: \(x^2-4\ne0\) \(\Leftrightarrow x\ne\pm2\)
b,Rút gọn:
\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^3-4x\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x^2-4\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}\)
\(=x-1\)
Để C = 0 thì x - 1 = 0
=> x = 1
Vậy : Để C = 0 thì x = 1
c,Để C nhận giá trị dương thì C > 0
Hay: x - 1 > 0
<=> x > 1
Vậy: Để C dương thì x > 1
=.= hok tốt!!
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b: \(C=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C=0 thì x-1=0
hay x=1
c: Để C>0 thì x-1>0
hay x>1
Vậy: \(\left\{{}\begin{matrix}x\in Z\backslash\left\{1\right\}\\x\notin\left\{2;-2\right\}\end{matrix}\right.\)
a. ĐKXĐ: x3 - x \(\ne\)0 <=> x(x2 - 1) \(\ne\)0 <=> x \(\ne\)0 và x\(\ne\)\(\pm\)1
b. \(A=\frac{x\left(x^2+2x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1}{x-1}với\)\(x\ne0\)và \(x\ne\pm1\)
\(c.A=2\Leftrightarrow\frac{x+1}{x-1}=2\)
\(\Leftrightarrow\left(x-1\right).2=x+1\)
\(2x-2=x+1\)
\(x=3\)
a) Giá trị của phân thức A xác định
\(\Leftrightarrow x^3-x\ne0\)
\(\Leftrightarrow x\left(x^2-1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)
Vậy với \(x\ne0;x\ne\pm1\)thì giá trị của phân thức A đưcọ xác định.
ĐKXĐ: \(x\ne0;x\ne\pm1\)
b) Ta có :
\(A=\frac{x^3+2x^2+x}{x^3-x}\)
\(A=\frac{x\left(x^2+2x+1\right)}{x\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{x+1}{x-1}\)
c) A = 2
\(\Leftrightarrow\frac{x+1}{x-1}=2\)
\(\Leftrightarrow x+1=2\left(x-1\right)\)
\(\Leftrightarrow x+1=2x-2\)
\(\Leftrightarrow x-2x=-1-2\)
\(\Leftrightarrow-x=-3\)
\(\Leftrightarrow x=3\)( Thỏa mãn ĐKXĐ )
Vậy ..............
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Làm dc mỗi thế thôi ak