\(A=\frac{9x^2+|x-3|+x-7}{3x-2}\)

Rút gọn phân thức với 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2020

\(A=\frac{9x^2+\left|x-3\right|+x-7}{3x-2}\)

Với \(\hept{\begin{cases}x\ne\frac{2}{3}\\x< 3\end{cases}}\)

\(A=\frac{9x^2+3-x+x-7}{3x-2}=\frac{9x^2-4}{3x-2}=\frac{\left(3x-2\right)\left(3x+2\right)}{3x-2}=3x+2\)

Với x = -2 < 3 => A = 3.(-2) + 2 = -4

11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

18 tháng 12 2016

a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)

b, Giá trị của x để phân thức có giá trị bằng (-2) : 

\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)

18 tháng 12 2016

Ai giúp mình câu 2 với

9 tháng 2 2017

a/ ĐKXĐ ....

A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

=\(\frac{1}{x}-\frac{1}{x-5}\)

=\(-\frac{5}{x^2-5x}\)

b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)

<=> x=-1, thay vào tính nốt

a)Ta có : \(4x^2=1\)

\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào B , ta được:

\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)

Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)

b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)

\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)

\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)

\(=\frac{x}{x+1}\)

Vậy \(M=\frac{x}{x+1}\)

c)Ta có: \(x< x+1\forall x\)

\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)

Vậy với mọi \(x\ne-1\)thì \(M< 1\)

24 tháng 7 2020

a, Điều kiện xác định: x<>0

b, Điều kiện xác định: x <> -1/3

c, Điều kiện xác định: x<>2

d, Điều kiện xác định: a<>0 và b<>0; b<>2a

A : không rút gọn được

\(B=\frac{4x^2\left(x-2\right)+3\left(x-2\right)}{3x\left(4x^2+3\right)+4x^2+3}=\frac{\left(4x^2+3\right)\left(x-2\right)}{\left(4x^2+3\right)\left(3x+1\right)}=\frac{x-2}{3x+1}\)

\(C=\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)

\(D=\frac{a^3+b^3}{a^3+\left(a-b\right)^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+a-b\right)\left(a^2-a^2+ab+a^2-2ab+b^2\right)}\)\(=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(2a-b\right)\left(a^2-ab+b^2\right)}=\frac{a+b}{2a-b}\)

21 tháng 5 2021

2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)

Khi |x - 1| = 2

=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)

Khi x = - 1 (không thỏa mãn) => Không tìm được A 

b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)

Đẻ P < 8

=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)

=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)

Vậy x > - 1 thì P < 8 

21 tháng 5 2021

Thay x = 1/2 vào 

Bài 1: 

a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)

\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)

b: Thay x=1/3 vào A, ta được:

\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)

NV
8 tháng 3 2020

\(A=\left(\frac{-\left(x-3\right)}{\left(x+3\right)}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right).\left(\frac{x+3}{3x^2}\right)\)

\(=\left(-1+\frac{x}{x+3}\right)\left(\frac{x+3}{3x^2}\right)=\frac{-3}{\left(x+3\right)}.\frac{\left(x+3\right)}{3x^2}=\frac{-1}{x^2}\)

\(A< 0\Rightarrow\frac{-1}{x^2}< 0\Rightarrow-1< 0\) (luôn đúng)

Vậy \(x\ne0;x\ne\pm3\) thì \(A< 0\)