Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do n2 luôn > hoặc = 0 khác -3 => n2 + 3 khác 0
=> A luôn tồn tại
b) bn chỉ việc thay n rùi tính A là ra
Lời giải:
a. Ta thấy $n^2+5\geq 5> 0$ với mọi $n\in\mathbb{Z}$
$\Rightarrow n^2+5\neq 0$ với mọi $n\in\mathbb{Z}$
$\Rightarrow$ phân số $M$ luôn tồn tại.
b.
Với $n=0$ thì $M=\frac{0-3}{0^2+5}=\frac{-3}{5}$
Với $n=2$ thì $M=\frac{2-3}{2^2+5}=\frac{-1}{9}$
Với $n=-5$ thì $M=\frac{-5-3}{(-5)^2+5}=\frac{-4}{15}$
ta có mẫu của M là : \(n^2+5>0\forall n\) thế nên M luôn tồn tại
b. ta có bảng sau
n | 0 | 2 | -5 |
M | \(-\frac{3}{5}\) | \(-\frac{1}{9}\) | \(-\frac{8}{30}\) |
a, - Để biểu thức B luôn tồn tại thì :
\(n^2+5\ne0\)
Mà \(n^2+5>0\forall n\)
=> \(n^2+5\ne0\) ( luôn đúng )
Vậy phân số B luôn tồn tại .
b, Thay n = 0 vào phân số B ta được :
\(B=\frac{0-2}{0^2+5}=-\frac{2}{5}\)
Thay n = 0 vào phân số B ta được :
\(B=\frac{2-2}{2^2+5}=0\)
Thay n = -5 vào phân số B ta được :
\(B=\frac{-5-2}{\left(-5\right)^2+5}=-\frac{7}{30}\)
a) Ta có: \(n^2\ge0\forall n\)
\(\Rightarrow n^2+5\ge5>0\forall x\)
⇒Với ∀n thì \(n^2+5\ne0\)
⇒\(B=\frac{n-2}{n^2+5}\) luôn xác định được giá trị(đpcm)
b) Thay n=0 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(\frac{0-2}{0^2+5}=\frac{-2}{5}\)
Thay n=2 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(B=\frac{2-2}{2^2+5}=\frac{0}{9}=0\)
Thay n=-5 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(\frac{-5-2}{\left(-5\right)^2+5}=\frac{-7}{30}\)
Vậy: \(-\frac{2}{5};0;\frac{-7}{30}\) lần lượt là ba giá trị của phân số \(B=\frac{n-2}{n^2+5}\) tại lần lượt n=0; n=2 và n=-5
Phân số M không tồn tại khi n2+15 =0 => n2= -15(vô lý vì bình phương của 1 sô nguyên luôn không âm).Do đó,n2+15 luôn khác 0 nên phân số M luôn tồn tại.
a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=>ƯCLN(2n+1,3n+2)=1
=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)
1) M luôn tồn tại,chỉ là dưới dạng phân số or số nguyên thoy
Để phân số \(D=\frac{m+5}{m^2+9}\)luôn tồn tại
\(\Leftrightarrow m^2+9\ne0\)
Mà \(m^2\ge0\forall m\)
=> m2 + 9 > 0
=> m2 + 9 \(\ne\)0
Vậy ĐPCM
a,Một phân số tồn tại khi mẫu khác 0
Nhận thấy phân số A có mẫu luôn lớn hơn 0
Nên phân số A luôn tồn tại với mọi n
b, n=-5 thì A=-5/14
n=0 thì A=-5/3
n=5 thì A=0
Ta có:
\(n^2\ge0\forall n\inℤ\)\(\Rightarrow n^2+5\ge5\forall n\inℤ\)\(\Rightarrow n^2+5>0\forall n\inℤ\)
\(\Rightarrow n^2+5\ne0\forall n\inℤ\)(1)
Xét phân số M = \(\frac{n-2}{n^2+5}\left(n\inℤ\right)\)
Vì ta có (1) nên M luôn tồn tại
Vậy M luôn tồn tại với mọi \(n\inℤ\)p
Chú ý : Một phân số luôn tồn tại ( hay được xác định) khi mẫu số của nó khác 0.