\(\frac{n+19}{n+6}\left(n\in N\right)\)
a, Tìm n để phân số là phân số t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

b) Gọi ƯCLN của n + 19 và n + 6 là d. Khi đó ta có: ( n + 19 ) và (n+6)
cùng chia hết cho d.
Suy ra: (n + 19) – (n + 6) =13 ⋮ d.
Vậy d thuộc { 1; 13 }
Phân số tối giản nếu (n + 19) và (n + 6) nguyên tố cùng nhau hay d không bằng 13
n + 6 không chia hết cho 13 suy ra n không bằng 13k - 6(k thuộc N*)

12 tháng 7 2015

Gọi ƯCLN(n+19; n+6) là d. Ta có:

n+19 chia hết cho d

n+6 chia hết cho d

=> n+19-(n+6) chia hết cho d

=> 13 chia hết cho d

Giả sử phân số rút gọn được

=> n+6 chia hết cho 13

=> n = 13k - 6

Để phân số trên là phân số tối giản => n\(\ne\)13k - 6

12 tháng 7 2015

Gọi ƯCLN(n+19; n+6) là d. Ta có:

n+19 chia hết cho d

n+6 chia hết cho d

=> n+19-(n+6) chia hết cho d

=> 13 chia hết cho d

Giả sử phan số rút gọn được

=> n+6 chia hết cho 13

=> n = 13k - 6

=> Để phân số tối giản thì n$\ne$≠13k - 6

29 tháng 1 2017

\(\frac{n+19}{n+6}=\frac{n+6+13}{n+6}=\frac{n+6}{n+6}+\frac{13}{n+6}=1+\frac{13}{n+6}\)

Để x là phân số tối giản <=> n + 6 thuộc Ư(13) = {1;13}

n + 6113
n-59

Vì n thuộc N nên n = 9

Vậy n = 9 thì x là phân số tối giản

29 tháng 1 2017

n = 9 nhA BN

18 tháng 3 2017

n=4 dung 100%

18 tháng 3 2017

có cách làm ko bạn

23 tháng 2 2018

a) \(n-2\ne0\Leftrightarrow n\ne2\)

b) \(\frac{15}{n-2}\in Z\)  khi   \(n-2\inƯ\left(15\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

đến đây tự lập bảng rồi làm 

23 tháng 2 2018

a, n-2 khác 0 nên n khác 2 

b, n-2 là ước của 15 vậy n-2 = { +-1;+-3;+-5;+-15} tương ứng ta có 

n-2 = -1 => n=1 Tm

n-2 =1 => n=3 Tm

n-2=3 => n= 5 Tm 

tương tự tìm các giá trị còn lại nhé 

ks cho mình nhé 

4 tháng 2 2022

hahaa

10 tháng 6 2017

\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)

Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản

\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn

Vậy \(n=2k\left(k\in Z\right)\)

8 tháng 7 2019

Để \(\frac{n+9}{n-6}\inℕ\)

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có : Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ_{\left(15\right)}\)

\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)

Lập bảng xét các trường hợp : 

\(n-6\)\(1\)\(3\)\(5\)\(15\)
\(n\)\(7\)\(9\)\(11\)\(21\)

Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)

Để \(\frac{n+9}{n-6}\)là số nguyên 

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có :\(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)

n-6-11-335-5-1515
n5739111-921