\(\frac{a+b}{c+d}\)(a,b,c,d\(\in\)Z+) ;biết...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Sử dụng đồng dư

16 tháng 3 2019

theo bài ra ta có :

(a+b) chia hết cho k => (a+b)d chia hết cho k => (a.d+b.d) chia hết cho k

(c+d) chia hết cho k => b(c+d) chia hết cho k => (b.c+b.d) chia hết cho k

suy ra:  (ad+bd)-(bc+bd) chia hết cho k

=>(ad-bc) chia hết cho k

Ta có:

a+b chia hết cho k;c+d chia hết cho k

=>(a+b)-(c+d) chia hết cho k

<=>d.(a+b)-b.(c+d) chia hết cho k

<=>ad+db-bc-bd chia hết cho k

<=>(ad-bd)+(db-bc) chia hết cho k

<=>0+(db-bc) chia hết cho k

Mà 0 chia hết cho k;0+(db-bc) chia hết cho k=>db-bc 0+(db-bc) chia hết cho k (đpcm)

Bài 1 : 

\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)

     \(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)

      \(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)

      \(=\frac{13.\left(84+70+63+60\right)}{2520}\)

       \(=\frac{13.277}{2520}\)

Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)

Vậy a chia hết cho 13

Bài 2 :

Ta có :  \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)

Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)

Từ (1)  ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau

Suy ra ;\(b'⋮b\left(2\right)\)

Tương tự ta cũng có \(b⋮b\left(3\right)\)

Từ (2 ) và (3 ) suy ra \(b=b'\)

Chúc bạn học tốt ( -_- )