\(\frac{n+1}{n+2}\)             {n khác 2}


a) Tìm n thuộc Z để...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B là số nguyên thì n+1 chia hết n-2

(n+1)-(n-2)chia hết n-2

n+1-n+2chia hết n-2

3chia hết n-2

n-2 thuộc Ư(3)={-1;1;-3;3}

n thuộc {1;3;-1;5}

B=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+3/n-2

để B lớn nhất 3/n-2 lớn nhất

nên n-2 bé nhất

n-2 là số nguyên dương bé nhất

 => n-2=1

     n=3  

20 tháng 2 2018

\(A=\frac{n+1}{n-2}\)

\(A=\frac{n-2+3}{n-2}\)

\(A=1+\frac{3}{n-2}\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3\right\}\)

đến đây lập bảng là xong

12 tháng 3 2018

a, \(ĐK:\text{ }n-2\ne0\Leftrightarrow n\ne2\)

b, \(A=\frac{3}{n-2};\text{ }n=-2\)

\(\Rightarrow A=\frac{3}{-2-2}=\frac{3}{-4}\)

\(A=\frac{3}{n-2}\text{; }n=0\)

\(\Rightarrow A=\frac{3}{0-2}=\frac{3}{-2}\)

\(A=\frac{3}{n-2};\text{ }n=5\)

\(\Rightarrow A=\frac{3}{5-2}=\frac{3}{3}=1\)

c, \(A=\frac{3}{n-2}=1\Leftrightarrow n-2=\frac{3}{1}\)

                                     \(\Rightarrow n-2=3\)

                                     \(\Rightarrow n=3+2\)

                                     \(\Rightarrow n=5\)

\(A=\frac{3}{n-2}=\frac{1}{2}\Leftrightarrow n-2=3:\frac{1}{2}\)

                                    \(\Rightarrow n-2=6\)

                                    \(\Rightarrow n=6+2\)

                                    \(\Rightarrow n=8\)

d, \(A\inℤ\text{ }\Leftrightarrow\text{ }3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)

12 tháng 3 2018

a)để A là phân số thì n-2 phải khác 0 =>n phải khác 2

b)+)n=-2

=>A=\(\frac{3}{-2-2}\)=\(\frac{3}{-4}\)

+)n=0

=>A=\(\frac{3}{0-2}=\frac{3}{-2}\)

+)n=5

=>A=\(\frac{3}{5-2}=\frac{3}{3}=1\)

c) theo như kết quả phần b thì để A=1 thì n phải =5

để A=\(\frac{1}{2}\)thì \(\frac{3}{n-2}=\frac{1}{2}\)=>\(\frac{3}{n-2}=\frac{3}{6}\)=>n-2=6=>n=6+2=>n=8

để A thuộc Z thì n-2 phải <0 =>n phải bé hơn 2 để n thuộc Z

25 tháng 8 2016

a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)

Ta có bảng sau:

  5n - 3  -6  -3  -2  -1   1  2   3  6
    n  -0,6  0 0,2 0,4 0,8  1  1,2  1,8

Mà n thuộc Z  => n = { 0 ; 1 }

b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất  => \(\frac{6}{5n-3}\)lớn nhất 

=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z

=> 5n - 3 = 2  => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)  

Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:

\(A=2+3=5\)

Vậy giá trị lớn nhất của A là 5 khi x = 1

26 tháng 8 2016

a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)

                             \(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)

                             \(=2+\frac{6}{5n-3}\)

Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)

\(\Rightarrow\frac{6}{5n-3}\in Z\)

\(\Rightarrow6\)chia hết cho\(5n-3\)

\(\Rightarrow5n-3\inƯ\left(6\right)\)

Ta có bảng sau :

       
       
       
5n-31-12-23-3
5n425160
n0,80,410,21,20

Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)

20 tháng 3 2018

a, \(A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

     \(n\inℤ\Rightarrow n-2\inℤ\)

\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

\(\Rightarrow n-2\) là số nguyên dương nhỏ nhất

\(\Rightarrow n-2=1\)

\(\Rightarrow n=3\)

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

20 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

Để \(A\inℤ\) thì \(3⋮\left(n-2\right)\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n-2\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(3\)\(1\)\(5\)\(-1\)

Vậy \(n\in\left\{-1;1;3;5\right\}\) thì A là số nguyên 

\(b)\) Ta có : 

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\) ( như câu a ) 

Để A đạt GTLN thì \(\frac{3}{n-2}\) phải đạt GTLN hay \(n-2>0\) và đạt GTNN 

\(\Rightarrow\)\(n-2=1\)

\(\Rightarrow\)\(n=3\)

Suy ra : \(A=\frac{3+1}{3-2}=\frac{4}{1}=4\)

Vậy \(A_{max}=4\) khi \(n=3\)

Chúc bạn học tốt ~ 

14 tháng 3 2017

M=(6n+4-5):(3n+2)=2-5:(3n+2)

a) để M nguyên thì (3n+2) phải là ước của 5

=> 3n+2={-5; -1; 1; 5}

+/ 3n+2=-5 => n=-7/3 (loại)

+/ 3n+2=-1 => n=-1; M=7

+/ 3n+2=1 => n=-1/3 loại

+/ 3n+2=5 => n=1; M=-3

Đs: n={-1; 1}

b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0

M​​min=2-5/2=-1/2

26 tháng 3 2017

a) A = ( n + 1 ) / ( n - 2 )

A = n - 2 + 3 / n - 2

A = 1 + ( 3/ n - 2 )

Để A nguyên => 3/ n-2 phải nguyên => n-2 thuộc ước của 3 { -1 ; 1 ; 3; -3 }

Sau đó bạn đặt từng trường hợp cho n - 2 là tìm ra n thôi