Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A nguyên => \(\frac{187}{4n+3}\inℤ\)
=> \(4n+3\inƯ\left(187\right)\)
Đến đây bạn tự giải tiếp nha.
a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)
suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\))
\(\Rightarrow n\in\left\{2;46\right\}\).
b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được.
Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)
- \(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)
\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)
ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).
- \(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)
Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
a) Để B là phân số <=> 4n + 1 \(\ne\)0 <=> 4n \(\ne\)-1 <=> n \(\ne\)-1/4
b) Ta có: B = \(\frac{8n+2}{4n+1}=\frac{2.\left(4n+1\right)}{4n+1}=2\)
Vậy với mọi n (n \(\ne\)-1/4) thì B là số nguyên
a) Để B là phân số thì
\(\hept{\begin{cases}8n+2\inℤ\\4n+1\inℤ\\4n+1\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n\inℤ\\n\ne-\frac{1}{4}\end{cases}}\)
b) \(\frac{8n+2}{4n+1}=\frac{2.\left(4n+1\right)}{4n+1}=2\)
Vậy với mọi giá trị của n là số nguyên thì B là số nguyên