Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC nguyên tố của 3n+3;4n+2 \(\Rightarrow\)\(\hept{\begin{cases}3n+3⋮d\\4n+2⋮d\end{cases}}\)
\(\Rightarrow4\left(3n+3\right)-3\left(4n+2\right)⋮d\)
\(\Rightarrow12n+12-12n-6⋮d\)
\(\Rightarrow6⋮d\)
\(\Rightarrow d\in\left\{2;3\right\}\)
- \(4n+2⋮3\)
\(\Rightarrow4n+2+3⋮3\)
\(\Rightarrow4n+8⋮3\)
\(\Rightarrow4\left(n+2\right)⋮3\)
\(\Rightarrow n+2⋮3\)
\(\Rightarrow n+2=3k\)
\(\Rightarrow n=3k-2\)
- \(3n+3⋮2\)
\(\Rightarrow3\left(n+1\right)⋮2\)
\(\Rightarrow n+1⋮2\)
\(\Rightarrow n+1=2m\)
\(\Rightarrow n=2m-1\)
Vậy \(\frac{3n+3}{4n+2}\)rút gọn được khi \(\hept{\begin{cases}n=3k-2\\n=2m-1\end{cases}}\)
a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)
suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\))
\(\Rightarrow n\in\left\{2;46\right\}\).
b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được.
Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)
- \(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)
\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)
ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).
- \(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)
Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).
Cho phân số A = \(\frac{6n+1}{4n+3}\)(với n nguyên)
Tìm giá trị n để A là phân số không rút gọn được.
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
B = \(\dfrac{4n+3}{3n+1}\) ( n \(\in\) z)
Gọi ước chung lớn nhất của 4n + 3 và 3n + 1 là d thì:
\(\left\{{}\begin{matrix}4n+3⋮d\\3n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(4n+3\right)3⋮d\\\left(3n+1\right)4⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}12n+9⋮d\\12n+4⋮d\end{matrix}\right.\)
⇒ 12n + 9 - 12n - 4 ⋮ d
(12n - 12n) + (9 - 4) ⋮ d
5 ⋮ d
d \(\in\) Ư(5) = {1; 5}
Để phân số A có thể rút gọn được thì d = 5
Với d =5 ta có:
4n + 3 ⋮ 5 và 3n + 1 ⋮ 5 ⇒ 4n+ 3 - (3n + 1)⋮ 5
4n + 3 - 3n - 1 ⋮ 5
(4n - 3n) + (3 - 1)⋮ 5
n + 2 ⋮ 5
n = 5k - 2
Vậy n là các số tự nhiên thỏa mãn n = 5k - 2 (k \(\in\) N*) thì A có thể rút gọn được.