Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n-1-n+3 = 2
n-3 (Ư)2 = -1; 1; -2;2
n= 2; 4; 1 ; 5
b) tuong tu;
n=2;4
Đặt: ( n + 3 ; n - 2 ) = d ( d là số tự nhiên )
=> \(\hept{\begin{cases}n+3⋮d\\n-2⋮d\end{cases}}\Rightarrow\left(n+3\right)-\left(n-2\right)⋮d\Rightarrow5⋮d\)
=> d = 1 hoặc d = 5
Để A là phân số tối giản thì d = 1 => d khác 5
+) Với d = 5 => \(\hept{\begin{cases}n+3⋮5\\n-2⋮5\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮5\\n-2⋮5\end{cases}\Rightarrow}\left(2n+6\right)-\left(n-2\right)⋮5\Rightarrow n+8⋮5\)
=> Tồn tại số nguyên k sao cho : n + 8 = 5k => n = 5k - 8
=> n = 5k - 8 thì d = 5
=> n \(\ne\)5k - 8 thì d = 1
Vậy n \(\ne\)5k - 8 thì A là phân số tối giản.
\(A=1+\frac{5}{n-2}\)(n khác 2)
Để A là phân số tối giản => \(\frac{5}{n-2}\)là phân số tối giản
=> n-2 là số nguyên chẵn
=> n là số nguyên chẵn và n khác 2
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
a) A thuộc Z
=> n + 1 chia hết cho n - 3
n - 3 + 4 chia hết cho n - 3
4 chia hết cho n - 3
n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}
n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}