\(\frac{n+1}{n-3}\)( n thuộc Z)

a) Tìm n để A là phân số.

b) Tì...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

a) để n là phân số thì n-3 khác 0 nên n khác 3

vậy n là mọi số nguyên khác 3

b) n lẻ 

c) để A lớn nhất thì n-3 sẽ nhỏ nhất nên n-3=1 vậy n=4

k nha bạn

k cho mình mình k lại

21 tháng 2 2017

Ta có : n + 1 chai hết cho n - 3

<=> n - 3 + 4 chia hết cho n - 3

=> 4 chia hết cho n - 3

=> n - 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}

Ta có bảng :

n - 3-4-2-1124
n-112457
13 tháng 1 2017

a) n=4;5;7

b)n=4

c)n=7

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

17 tháng 7 2016

a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số

b) Để A nguyên thì 2n - 5 chia hết cho n + 3

=> 2n + 6 - 11 chia hết cho n + 3

=> 2.(n + 3) - 11 chia hết cho n + 3

Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3

=> n + 3 thuộc {1 ; -1; 11; -11}

=> n thuộc {-2; -4; 8; -14}

c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3

=> 2n - 5 chia hết cho d; n + 3 chia hết cho d

=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d

=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d

=> (2n + 6) - (2n - 5) chia hết cho d

=> 2n + 6 - 2n + 5 chia hết cho d

=> 11 chia hết cho d

=> d thuộc {1 ; 11}

Mà d nguyên tố => d = 11

Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11

=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11

=> 2.(n + 3) chia hết cho 11

Do (2,11)=1 => n + 3 chia hết cho 11

=> n = 11k + 8 ( k thuộc Z)

Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được

Với n khác 11k + 8 (k thuộc Z) thì A tối giản

26 tháng 2 2017

Để A là phân số thì 3n + 7 ko chia hết cho n + 1

<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}

=> n khác {-2;-3;-5;0;1;3}

Để A là số nguyên thì 3n + 7 chia hết cho n + 1

=> 3n + 3 + 4 chia hết cho n + 1

=> 3.(n + 1) + 4 chia hết cho n + 1

=>  4 chia hết cho n + 1

=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}

=> n = {-5;-3;-2;0;1;3}

26 tháng 2 2017

ko biết

7 tháng 4 2019

đợi chút nha

7 tháng 4 2019

a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)

Để A nguyên thì 4 phải chia hết cho 2n+1

=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}

Mà 2n + 1 là số lẻ

=> 2n + 1 \(\varepsilon\){-1;1}

=> 2n \(\varepsilon\){-2;0}

=> n \(\varepsilon\){-1;0}

Vậy:...

26 tháng 3 2016

a) n-1-n+3 = 2

n-3 (Ư)2 = -1; 1; -2;2

n= 2; 4; 1 ; 5

b)  tuong tu;

n=2;4

26 tháng 5 2016

\(A=\frac{n-5}{n+1}\)

Để A có giá trị nguyên 

=> n-5 chia hết n+1 

=> (n+1)-6 chia  hết n+1

=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)

Ta có bảng : 

n+11-12-23-36-6
n0-21-32-45-7

Câu b tự làm

26 tháng 5 2016

a, Để a nguyên thì n-5 chia hết cho n+1

suy ra n-1+6 chia hết cho n-1

Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1

Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}

suy ra n thuộc {2;0;3;-1;4;-2;7;-5}

Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}

b, Gọi d là ước nguyên tố chung của n-5 và n+1

Suy ra n-5 chia hết cho d, n+1 chia hết cho d

Suy ra (n+1)-(n-5) chia hết cho d

suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d

Do d nguyên tố nên d thuộc {2;3}

Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)

Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)

Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản

8 tháng 6 2019

a) Ta có: \(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)

Để phân số tối giản thì: \(\frac{21}{n-2}\in Z\)

\(\Rightarrow21⋮n-2\)

\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)

29 tháng 7 2020

a,                    \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)

\(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)

để B tối giản thì 7 phải chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(7)

=> 2n - 3 = { 1 , -1 , 7 , -7 }

=> 2n = { 4 , 2 , 10 , -4 }

=> n ={ 2 , 1 ,5 ,-2 }

Đừng bỏ cuộc

29 tháng 7 2020

b, để \(\frac{4n+1}{2n-3}\) lớn nhất 

=> 2n - 3 phải nhỏ nhất

mà 2n - 3 phải >0 và khác 0 ( là mẫu số )

=> 2n -3 = 1

=> 2n = 4

n = 2

15 tháng 11 2023

Vũ™©®×÷|