Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
#)Giải :
\(A=\frac{2n+1}{2n-4}=\frac{2n-4+5}{2n-4}=\frac{2n-4}{2n-4}+\frac{5}{2n-4}=1+\frac{5}{2n-4}\)
Để A là phân số tối giản => 5 không chia hết cho 2n - 4
Lập bảng ra xét rồi chọn những số thỏa mãn
\(\text{Ta có :}\)
\(\frac{2n+1}{2n-4}=\frac{2n-4+5}{2n-4}\)
\(=1+\frac{5}{2n-4}\)
\(\text{Để biểu thức không là phân số thì 5 không chia hết cho 2n - 4.}\)
\(=>\text{2n - 4 không thuộc Ư(5)}\)
\(=>\text{2n - 4 không bằng }-1,-5,1,5\)
\(=>\text{n không bằng }\frac{3}{2},\frac{-1}{2},\frac{5}{2},\frac{9}{2}.\)
\(\text{Vậy ...}\)
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n
Bài 1:
\(D=\frac{x^2-1}{x+1}=\frac{x\left(x+1\right)-x-1}{x+1}=\frac{x\left(x+1\right)}{x+1}-\frac{x-1}{x+1}=x-\frac{x+1-2}{x+1}\in Z\)
=>2 chia hết x+1
=>x+1 thuộc Ư(2)={1;-1;2;-2}
=>x thuộc {0;-2;1;-3}
Bài 2:
Gọi d là UCLN(2n+3;4n+8)
Ta có:
[2(2n+3)]-[4n+8] chia hết d
=>[4n+6]-[4n+8] chia hết d
=>-2 chia hết d =>d={1;2}
với d=2 ps ko tối giản ->d=1
Vậy ps tối giản
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
Cho A=\(\frac{2n+1}{n-3}\)+ \(\frac{3n-5}{n-3}\)- \(\frac{4n-5}{n-3}\)
Tìm n để A là phân số tối giản
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(=\frac{2n+1+3n-5-4n-5}{n-3}\)
\(=\frac{n-9}{n-3}\)
Mk rút gọn rồi bạn thế 0 vào là được.
A=\(\frac{2n+1}{n-3}\)+...(đề bài)
=\(\frac{\left(2n+1\right)+\left(3n-5\right)-\left(4n-5\right)}{n-3}\)=\(\frac{n+1}{n-3}\)=1+\(\frac{4}{n-3}\)
Để A là phân số tối giản :\(\frac{4}{n-3}\)phải tối giản
Từ đây mình ko thể nhớ tiếp mong bạn nào hỗ trợ!
Chứng tỏ rằng các phân sô sau tối giản với mọi phân số:
\(A,\frac{n+1}{2n+3}\)\(B,\frac{2n+3}{4n+8}\)
a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d
=> n+1 \(⋮\)d
2n+3 \(⋮\)d
=> 2(n+1) \(⋮\)d
2n+ 3 \(⋮\)d
=> 2n+2 \(⋮\)d
2n+3 \(⋮\)d
=> 2n+3 - 2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> d =1
Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản
Phần b cũng thế nha
Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
=> \(1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
b Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ với mọi n nguyên
=> 2n + 3 không chia hết cho 2
=> \(d\ne2\)=> d = 1
Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để A thuộc Z
=> 5/2n+3 thuộc Z
=> 5 chia hết cho 2n +3
=> 2n+3 thuộc Ư(5)={1;-1;5;-5}
nếu 2n + 3 = 1 => 2n = -2 => n = -1 (Loại)
2n+3 = -1 => 2n=-4 => n = -2 (Loại)
2n+3 = 5 => 2n = 2 => n = 1 (TM)
2n+3 = -5 => 2n = -8 => n = -4 (Loại)
\(\Rightarrow n\ne1\) thì A là phân số ( n thuộc N)
Cảm ơn bạn CÔNG CHÚA ÔRI nhiều ạ