\(A=\dfrac{n+1}{n-2}\left(n\inℤ,n\ne2\right)\). Hãy tìm n để:
a) A có g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2024

a) Để A có giá trị nguyên thì n+1⋮n-2

⇒n+1 ⋮ n-2

⇒n-2+3 ⋮ n-2

⇒3 ⋮ n-2 (vì n-2 ⋮ n-2 với mọi n ϵ Z)

⇒n-2 ϵ U(3), mà Ư(3) = \(\left\{-3;-1;1;3\right\}\) nên ta có bảng sau:

n-2 -3 -1 1 3
n -1 1 3 5

Vậy nϵ\(\left\{-1;1;3;5\right\}\) thì A có giá trị nguyên

10 tháng 3 2024

b) Để A có giá trị lớn nhất thì mẫu số của A phải là 1

⇒n-2=1

⇒n=1+2

⇒n=3

Vậy n=3 thì A có giá trị lớn nhất

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
28 tháng 1 2020

a)\(A=\frac{2n+3}{n-2}\left(n\:\ne2\right)\)

\(\Rightarrow\frac{2n-4+7}{n-2}\)\(=\)\(\frac{2\left(n-2\right)+7}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)

\(2\inℤ\Rightarrow\frac{7}{n-2}\inℤ\Rightarrow7⋮\left(n-2\right)\)\(\Rightarrow\left(n-2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng :

n-2-7-117
n-515

9

Vậy \(n\in\left\{-5;1;3;9\right\}\)

18 tháng 5 2018

Để A là số nguyên 

<=> 4n + 1 chia hết cho 2n + 3 

<=> 4n + 6 - 5 chia hết cho 2n + 3

<=> 2(2n + 3) - 5 chia hết cho 2n + 3 

<=> 5 chia hết cho 2n + 3

<=> 2n + 3 thuộc Ư(5) = {-1 ; 1 ; -5 ; 5}

<=> n thuộc {-2 ; -1 ; -4 ; 1}

5 tháng 4 2019

A nguyen suy ra 2n+3 chia het cho n-2 

suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2

n thuoc tap hop [3 ,1 ,9,-5]

hoc tot

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

12 tháng 3 2017

a)Để a có giá trị nguyên thì \(\left(n+1\right)⋮\left(n-2\right)\)

\(\Rightarrow\left[\left(n+1\right)-\left(n-2\right)\right]⋮\left(n-2\right)\)

\(\Rightarrow\left(n+1-n+2\right)⋮\left(n-2\right)\)

\(\Rightarrow3⋮\left(n-2\right)\)

\(\Rightarrow n-2\in\){1;3;-1;-3}

\(\Rightarrow n\in\){3;5;1;-1}

Vậy với n\(\in\){3;5;1;-1} thì a có giá trị nguyên.

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU