Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
miik cần gấp lắm mai trường mình thi rồi mong mọi người giải hộ ;-;
b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1
Gọi ƯCLN(n,2n+3) là :d
suy ra: n chia hết cho d và 2n+3 chia hết cho d
suy ra : (2n+3) - 2n chia hết cho d
3 chia hết cho d
suy ra: d thuộc Ư(3) =( 3,1)
ta có: 2n +3 chia hết cho 3
2n chia hết cho 3
mà (n,3)=1 nên n chia hết cho 3
vậy khi n=3k thì (n,2n+3) = 3 (k thuộc N)
suy ra : n ko bằng 3k thì (n,2n+3)=1
vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản
a/ n rút gọn đi còn 1/2+3 bằng 1/5
b/rút gọn 3a hết còn 1/1 vậy bằng 1
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên thì 2n+3 \(⋮\) 4n+1
Ta có 2n+3 \(⋮\)4n+1
=> 4n+6 \(⋮\)4n+1
=> (4n+1)+5 \(⋮\)4n+1
=> 5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }
Ta có bảng :
4n+1 | -1 | -5 | 1 | 5 |
4n | -2 | -6 | 0 | 4 |
n | không có | không có | 0 | 1 |
Mà n \(\in\)N
+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)
+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )
Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
b, Gọi d \(\in\)UC(2n+3;4n+1)
Ta có 2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d
4n+1 \(⋮\)d
Suy ra 2(2n+3) - (4n+1) \(⋮\)d
4n+6 - 4n+1 \(⋮\)d
5 \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }
+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5
(5n+5).(n+4) \(⋮\)5
n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)
Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5
Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản
1, A=\(\frac{2n+3}{\text{4n + 1}}\)
A=\(\frac{4n+6}{\text{4n + 1}}\)
A=\(\frac{4n+1+5}{\text{4n + 1}}\)
A=1+\(\frac{5}{\text{4n + 1}}\)
Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.
Vậy n\(\in\){0;1} thì A là số tự nhiên
\(\frac{2n+3}{2n+1}=1\frac{2}{2n+1}\)để 2/2n+1 nguyên thì 2n+1\(\in\)Ư(2)
Ư(2)={1;-1;2;-2}
thế vào:
2n+1=1
2n=1-1
2n=0
n=0:2
n=0
2n+1=-1
2n=-1-1
2n=-2
n=-2:2
n=-1
2n+1=2
2n=2-1
2n=1
n=1:2
n=0,5
2n+1=2
2n=2-1
2n=1
n=1:2
n=0,5
vì n là STN nên ta chỉ nhận n=0
mk trả lời dc 1 câu thôi còn câu b thì để mình suy nghĩ đã
k đí rồi mk giải câu b
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
Lời giải:
Gọi $d=ƯCLN(2n-3, n+7)$
$\Rightarrow 2n-3\vdots d; n+7\vdots d$
$\Rightarrow 2(n+7)-(2n-3)\vdots d$
$\Rightarrow 17\vdots d$
Để $A$ không tối giản thì $d=17$
$\Rightarrow n+7\vdots 17$
$\Rightarrow n+7=17k$ với $k$ tự nhiên khác 0
$\Rightarrow n=17k-7$
Vì $n< 200\Rightarrow 17k-7< 200$
$\Rightarrow k< 13$
Mà $k$ là stn khác 0 nên $k\in \left\{1; 2;3;...; 12\right\}$
Có $12$ số $k$ thỏa mãn, kéo theo có $12$ số $n$ thỏa mãn.