Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
Với các giá trị nguyên của \(x\ne-1\), để A nguyên thì \(\left(x^5+1\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^5+x^2-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^2\left(x^3+1\right)-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x^2-1\right)⋮\left(x^3+1\right)\)
\(\Leftrightarrow\left(x-1\right)⋮\left(x^2-x+1\right)\)
\(\Rightarrow x\left(x-1\right)⋮\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x^2-x+1-1\right)⋮\left(x^2-x+1\right)\)
\(\Leftrightarrow1⋮\left(x^2-x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=1\\x^2-x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $x\neq \pm 1$
a.
\(P=\frac{x(x+1)-(x^2+2)}{x+1}:[\frac{x(x-1)}{(x-1)(x+1)}+\frac{x-4}{(x-1)(x+1)}]\\ =\frac{x-2}{x+1}:\frac{x(x-1)+x-4}{(x-1)(x+1)}\\ =\frac{x-2}{x+1}:\frac{x^2-4}{(x-1)(x+1)}\\ =\frac{x-2}{x+1}.\frac{(x+1)(x-1)}{(x-2)(x+2)}=\frac{x-1}{x+2}\)
b.
Để $P=2$ thì $\frac{x-1}{x+2}=2$ ($x\neq \pm 2$)
$\Rightarrow x-1=2(x+2)$
$\Leftrightarrow x=-5$ (tm)
c.
Với $x$ nguyên, để $P$ nguyên thì $x-1\vdots x+2$
$\Rightarrow (x+2)-3\vdots x+2$
$\Rightarrow 3\vdots x+2$
$\Rightarrow x+2\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow x\in \left\{-3; -1; 1; -5\right\}$
Do $x\neq \pm 1$ nên $x\in\left\{-3;-5\right\}$
d.
$P<1\Leftrightarrow \frac{x-1}{x+2}<1$
$\Leftrightarrow \frac{x-1}{x+2}-1<0$
$\Leftrightarrow \frac{-3}{x+2}<0$
$\Leftrightarrow x+2>0\Leftrightarrow x>-2$
Kết hợp đkxđ suy ra $x>-2; x\neq \pm 1; x\neq 2$
Bài 2:
a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)
\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{2}{2x+1}\)
b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)
c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)
+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)
+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)
Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)
a/ Ta có \(A=\frac{\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}}{1-\frac{x}{x+2}}\)với \(\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
\(A=\frac{\frac{x}{x^2-4}+\frac{x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2-x}{x+2}}\)
\(A=\frac{\frac{x}{x^2-4}+\frac{x-2-2x-4}{x^2-4}}{\frac{2}{x+2}}\)
\(A=\frac{\frac{x-x-6}{x^2-4}}{\frac{2}{x+2}}\)
\(A=\frac{-6}{x^2-4}.\frac{x+2}{2}\)
\(A=\frac{-3}{x-2}\)
b/ Ta có \(x=-4\)thoả mãn ĐKXĐ
Vậy với \(x=-4\):
\(A=\frac{-3}{x-2}=\frac{-3}{-4-2}=\frac{1}{2}\)
c/ Khi \(A\inℤ\)
=> \(\frac{-3}{x-2}\inℤ\)
=> \(-3⋮\left(x-2\right)\)
=> x - 2 là ước của -3
Ta có bảng sau:
x-2 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
x | 1 | 0 | -1 | -4 | 3 | 4 | 5 | 8 |
Mà ĐKXĐ \(\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
=> \(x\in\left\{\pm1;\pm4;3;5;8\right\}\)
Vậy khi \(x\in\left\{\pm1;\pm4;3;5;8\right\}\)thì \(A\inℤ\).
P= (x+3)/(x-3)
=> P= (x-3+6)/(x-3)
=> P= (x-3)/(x-3) + 6/(x-3)
=> P= 1 + 6/(x-3)
Ta có x-3>0 vì mọi số nguyên tố đều > 1.
=> 6/(x-3) thuộc N*.
=> x thuộc {4;5;6;9}
Thử các trường hợp ta có đáp số x thuộc {4;6;9} để P nguyên tố.
Ta có: \(P=\frac{x+3}{x-3}=\frac{x-3+6}{x-3}=1+\frac{6}{x-3}\)
\(\Rightarrow6⋮\left(x-3\right)\Rightarrow x-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng:
\(x\in Z\Rightarrow x=\left\{2;4;5;1;6;0;9;-3\right\}\)