\(P=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

\(B=\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\)

\(=\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+...+\left(\frac{1}{2011}+1\right)-2011\)

\(=\frac{2012}{1}+\frac{2012}{2}+...+\frac{2012}{2011}+\frac{2012}{2012}-2012\)

\(=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)

Do đó: \(\frac{B}{A}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2012}\right)}\)

\(=\frac{1}{2012}\)

ddaps số 

1/2012

hok tốt

7 tháng 5 2018

mik làm câu A thôi nha

ta có :

1 - 2009/2010 = 1/2010

1 - 2010/2011 = 1/2011

Phần bù nào bé thì phân số đó lớn .

Vì 1/2010 > 1/2011

Nên 2009/2010 > 2010/2011

7 tháng 5 2018

Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 ) 
Để so sánh hai phân số, ta so sánh các hiệu. 

\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)

Ta có :

\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)

\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)

Ta thấy :

\(\frac{1}{2010}>\frac{1}{2011}\)

Hay :

\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)

Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)

9 tháng 3 2018

\(b)\)  Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)

Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)

Chúc bạn học tốt ~

9 tháng 3 2018

Àk mình còn thiếu một điều kiện nữa xin lỗi nhé : 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Bạn thêm vào nhé 

12 tháng 1 2019

b,Ta có 

\(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow P>Q\)

12 tháng 1 2019

\(A=\frac{-10}{20}+\frac{-10}{30}+\frac{-10}{42}+\frac{-10}{56}+\frac{-10}{72}+\frac{-10}{90}+\frac{-10}{110}\)

\(=-10\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\right)\)

\(=-10\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\right)\)

\(=-10\left(\frac{1}{4}-\frac{1}{11}\right)\)

\(=\frac{-35}{22}\)

4 tháng 4 2019

Câu a: Câu hỏi của Trần H khánh my - Toán lớp 6 - Học toán với OnlineMath

Câu b: \(\frac{2}{9}=\frac{4}{18}\)

Vì \(\frac{4}{18}< \frac{4}{15}\)nên \(\frac{2}{9}< \frac{4}{15}\)

Câu c: Đặt số trung gian là 1.

Ta có: \(\frac{2010}{2011}< 1\)

và \(\frac{2011}{2010}>1\)

suy ra \(\frac{2010}{2011}< \frac{2011}{2010}\)

4 tháng 4 2019

ko quy đồng nhé

19 tháng 7 2016

MS=\(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{2}{2011}\right)+\left(1+\frac{1}{2012}\right)\)

     =\(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

=> \(x.\frac{1}{2013}=1\)

=>x=2013

15 tháng 4 2017

Ta có: A=\(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)

=> A=\(\frac{2012-2011}{2011}+\frac{2012-2010}{2010}+...+\frac{2012-2}{2}+\frac{2012-1}{1}\)

=>A=\(\frac{2012}{2011}-1+\frac{2012}{2010}-1+...+\frac{2012}{2}-1+2012-1\)

=>A=\(2012\cdot\left(\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{2}\right)+1\)

=> A= \(2012\cdot\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)\)

ko biết có đúng hay ko nựa sai thì bỏ qua nha ^^

15 tháng 4 2017

dung r bn oi

con co cau p=1/2+1/3+...+1/2011+1/2012

11 tháng 6 2020

Ta có:4=1+1+1+1=\(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)

\(\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)

Xét \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)

\(=\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)

xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)

\(\Rightarrow4< A\)

12 tháng 6 2020

bạn chắc chắn là đúng chứ