K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)

\(\Leftrightarrow x^2-3x+2-m=0\)

\(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)

- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)

Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)

- Ta có : \(OA^2+OB^2=10\)

\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)

\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)

\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)

\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)

\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)

\(\Leftrightarrow2m^2+10m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)

- Kết hợp ĐK (1) => m = 0 ( TM )

Vậy ...

 

 

30 tháng 11 2023

Sửa đề: Sao cho biểu thức T đạt GTLN

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)

=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)

\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(-4m^2+8m>=0\)

=>\(-4\left(m^2-2m\right)>=0\)

=>\(m^2-2m< =0\)

=>\(m\left(m-2\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)

=>0<=m<=2

TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)

=>Loại

\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)

\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)

\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)

\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)

\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)

\(=-2\left(m^2-m+1\right)\)

\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)

Dấu '=' xảy ra khi m=1/2

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:
PT hoành độ giao điểm:

$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$

$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$

Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb

$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$

$\Leftrightarrow m(2-m)>0$

$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:

$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:

$T=y_1+y_2-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$

$=-2m^2+2m-2$

Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.