Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét phương trình hoành độ giao điểm : \(mx^2=nx+4\)
Để hai đồ thị tiếp xúc tại điểm có hoanh độ bằng 2 thì pt trên có 1 nghiệm duy nhất x = 2.
\(mx^2=nx+4\Leftrightarrow mx^2-nx-4=0\)
\(\Delta=0\Leftrightarrow n^2+16m=0\)
Hơn nữa \(4m-2n-4=0\)
Kết hợp hai pt ta tìm được m = -1; n = -4.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét phương trình hoành độ giao điểm
\(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)
Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Đồ thị hàm số:
2.
\(x=1\Rightarrow y=2\Rightarrow A\left(1;2\right)\)
\(x=2\Rightarrow y=8\Rightarrow B\left(2;8\right)\)
Phương trình đường thẳng AB:
\(6x-y-4=0\)
Vì \(\left(d\right)//\left(AB\right)\Rightarrow m=6\Rightarrow6x-y+n=0\left(AB\right)\)
Theo giả thiết \(\left(d\right)\) tiếp xúc với \(\left(P\right)\), phương trình hoành độ giao điểm:
\(6x+n=2x^2\)
\(\Leftrightarrow2x^2-6x-n=0\)
\(\Delta'=9+2n=0\Leftrightarrow n=-\dfrac{9}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)