\(y=\frac{1}{2}x^2\) giả sử đường thẳng đi qua I(0;1) cắt P tại A1,B1 và A2,B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2020

Phương trình hoành độ giao điểm:

\(x^2-2mx+m^2-1=0\)

\(\Delta'=m^2-m^2+1=1>0\)

Phương trình đã cho luôn có 2 nghiệm pb: \(\left\{{}\begin{matrix}x=m+1\\x=m-1\end{matrix}\right.\)

a/ TH1: \(\left\{{}\begin{matrix}x_1=m+1\\x_2=m-1\end{matrix}\right.\) \(\Rightarrow m+1-2\left(m-1\right)=0\Rightarrow m=...\)

TH2: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=m+1\end{matrix}\right.\) \(\Rightarrow m-1-2\left(m+1\right)=0\Rightarrow m=...\)

b/ \(\left\{{}\begin{matrix}m-1>1\\m+1>1\end{matrix}\right.\) \(\Rightarrow m>2\)

27 tháng 6 2019

Gọi ptđt (d) có dạng: y= kx+b

Vì M(1;12)\(\in\) (d)

Thay xM= 1; yM= 12 vào (d)

\(k+b=12\Rightarrow b=12-k\)

Xét PTHĐGĐ của (d) và (P)

\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)

\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)

\(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)

Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK

7 tháng 1 2019

Hoành độ giao điểm của (d) và (P) là nghiệm của pt

\(kx+\frac{1}{2}=\frac{1}{2}x^2\)

\(\Leftrightarrow x^2-2kx-1=0\left(1\right)\)

Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt 

Khi đó: \(\Delta'>0\)

\(\Leftrightarrow k^2+1>0\)(Luôn đúng)

Theo Vi-ét ta có: xA + xB = 2k

                          xA . xB = -1

Vì \(A;B\in\left(P\right)\)

\(\Rightarrow\hept{\begin{cases}y_A=\frac{1}{2}x_A^2\\y_B=\frac{1}{2}x_B^2\end{cases}}\)

Gọi I(xI ; yI) là trung điểm AB

Khi đó: \(x_I=\frac{x_A+x_B}{2}=\frac{2k}{2}=k\)

         \(y_I=\frac{y_A+y_B}{2}=\frac{x^2_A+x_B^2}{4}=\frac{\left(x_A+x_B\right)^2-2x_Ax_B}{4}=\frac{4k^2+2}{4}=k^2+\frac{1}{2}\)

Do đó: \(y_I=x_I^2+\frac{1}{2}\)

Nên I thuộc \(\left(P\right)y=x^2+\frac{1}{2}\)

Vậy ...............

P/S: nếu bạn thắc mắc về \(\left(P\right)=x^2+\frac{1}{2}\)thì mình sẽ giải thích

Ở cấp 2 thì ta chỉ được gặp dạng (P) y = ax2 có đỉnh trùng với gốc tọa độ

Nhưng đây chỉ là dạng đặc biệt của nó thôi . Còn dạng chuẩn là (P) y = ax2 + bx + c . (P) này có đỉnh không trùng với gốc tọa độ

14 tháng 5 2017

a) Áp dụng hệ quả định lý thales:

\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)

Áp dụng BĐT bunyakovsky:

\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)

dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)

b) chưa nghĩ :v

5 tháng 8 2017

b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong

5 tháng 8 2017

A= \(\frac{1}{a^3}\)\(\frac{1}{b^3}\)\(\frac{1}{c^3}\)\(\frac{ab^2}{c^3}\)\(\frac{bc^2}{a^3}\)\(\frac{ca^2}{b^3}\)

Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)

3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)

Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)

=> cái tử >= 9abc= 9 vì abc=1 
Còn lại tự làm

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Bài 1:

ĐK: \(x\geq 0; x\neq 16\)

\(B=\frac{\sqrt{x}+3}{\sqrt{x}+4}+\frac{5\sqrt{x}+12}{x-16}=\frac{(\sqrt{x}+3)(\sqrt{x}-4)}{(\sqrt{x}+4)(\sqrt{x}-4)}+\frac{5\sqrt{x}+12}{(\sqrt{x}-4)(\sqrt{x}+4)}\)

\(=\frac{x+4\sqrt{x}}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{\sqrt{x}(\sqrt{x}+4)}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{\sqrt{x}}{\sqrt{x}-4}\)

\(\Rightarrow \frac{A}{B}=\frac{\sqrt{x}+3}{\sqrt{x}-4}:\frac{\sqrt{x}}{\sqrt{x}-4}=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)

Do đó: \(\frac{A}{B}=m+1\Leftrightarrow 1+\frac{3}{\sqrt{x}}=m+1\Leftrightarrow m=\frac{3}{\sqrt{x}}\)

Để pt \(\frac{A}{B}=m+1\) có nghiệm thì pt \(m=\frac{3}{\sqrt{x}}\) phải có nghiệm

\(\Leftrightarrow \left\{\begin{matrix} m>0\\ m\neq \frac{3}{\sqrt{16}}=\frac{3}{4}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Bài 2:

a_

PT hoành độ giao điểm:

\(\frac{1}{2}x^2-(m-1)x-m=0(*)\)

(d) cắt (P) tại điểm có hoành độ $-2$ khi PT $(*)$ có nghiệm $x=-2$

\(\Leftrightarrow \frac{1}{2}(-2)^2-(m-1)(-2)-m=0\)

\(\Leftrightarrow 2+2(m-1)-m=0\Leftrightarrow m=0\)

b)

Để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ $x_1,x_2$ thì pt $(*)$ phải có 2 nghiệm phân biệt $x_1,x_2$

\(\Leftrightarrow \Delta=(m-1)^2+2m>0\Leftrightarrow m^2+1>0\)

\(\Leftrightarrow m\in\mathbb{R}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=\frac{m-1}{2}\\ x_1x_2=\frac{-m}{2}\end{matrix}\right.\)

Để \(x_1< 2< x_2\Leftrightarrow (x_1-2)(x_2-2)< 0\)

\(\Leftrightarrow x_1x_2-2(x_1+x_2)+4< 0\)

\(\Leftrightarrow \frac{-m}{2}-(m-1)+4< 0\)

\(\Leftrightarrow m> \frac{10}{3}\)

Vậy......