K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

27 tháng 6 2020

a, b, dễ quá bỏ qua .

b, - Xét phương trình hoành độ giao điểm :

\(\frac{1}{2}x^2=\left(m-1\right)x+\frac{1}{2}m^2+m\)

=> \(\frac{1}{2}x^2-\left(m-1\right)x-\frac{1}{2}m^2-m=0\)

=> \(\Delta=b^2-4ac=\left(-\left(m-1\right)\right)^2-\frac{4.1}{2}.\left(-\frac{1}{2}m^2-m\right)\)

=> \(\Delta=m^2-2m+1+m^2+2m=2m^2+1\ge1>0\forall m\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m .

=> ( P ) căt ( d ) tại hai điểm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2+2m\end{matrix}\right.\)

- Để \(x^2_1+x^2_2+6x_1x_2>2019\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2>2019\)

<=> \(\left(2m-2\right)^2+4\left(m^2+2m\right)>2019\)

<=> \(4m^2-8m+4+4m^2+8m>2019\)

<=> \(8m^2>2015\)

<=> \(m^2>\frac{2015}{8}\)

<=> \(\left[{}\begin{matrix}m>\sqrt{\frac{2015}{8}}\\m< -\sqrt{\frac{2015}{8}}\end{matrix}\right.\)

29 tháng 6 2020

Thanks

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)