K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

Xét ptr hoành độ của `(P)` và `(d)` có:

        `x^2=mx-1`

`<=>x^2-mx+1=0`   `(1)`

Để `(d)` cắt `(P)` tại `2` điểm pb thì ptr `(1)` có `2` `n_o` pb

  `=>\Delta > 0`

`<=>(-m)^2-4 > 0`

`<=>m^2 > 4`

`<=>` $\left[\begin{matrix} m > 4\\ m < -4\end{matrix}\right.$

Với `m > 4` hoặc `m < -4`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=-m),(x_1.x_2=c/a=1):}`

Ta có:`x_2(x_1 ^2+1)=3`

`<=>x_2(x_1 ^2+x_1.x_2)=3`

`<=>x_1.x_2(x_1+x_2)=3`

`<=>1(-m)=3`

`<=>m=-3` (ko t/m)

Vậy không có gtr nào của `m` t/m yêu cầu đề bài

6 tháng 4 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)

pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)

Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)

Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)

19 tháng 4 2020

a) PT hoành độ giao điểm (d) (P)

mx-n+1=x2

<=> x2-mx+m-1=0

\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)

Vậy (d); (P) luôn cắt nhau tại 2 điểm phân biệt

b) \(x_1^2x_2+x_2^2x_1=2\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=2\)

\(\Leftrightarrow\left(m-1\right)m=2\)

<=> m2-m-2=0

\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)

19 tháng 4 2020

a) phương trình hoành độ giao điểm của (d)và (P) là:

\(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)

TA CÓ: a=1, b'=\(\frac{-m}{2},\)c= m-1

\(\Rightarrow\)\(\Delta'\)=\(\left(b'\right)^2-ac=\left(\frac{-m}{2}\right)^2-\left(m-1\right).1\)\(=\frac{m^2}{4}-m+1\)

\(=\)\(\frac{m^2}{4}-2.\frac{m}{2}.1+1=\left(\frac{m}{2}-1\right)^2\)

\(\text{ để đường thẳng d và parabol ( P) cắt nhau tại 2 điểm phân biệt}:\)

\(\Delta'>0\Leftrightarrow\)\(\left(\frac{m}{2}-1\right)^2>0\Leftrightarrow m\ne2\)

vậy với m \(\ne2\) thì ......

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

10 tháng 4 2022

a) Thay A(1; -9) vào (d), ta có:

-9 = 3m + 1 - m2

<=> -9 - 3m - 1 + m2 = 0

<=> -10 - 3m + m2 = 0

<=> m = 5 hoặc m = -2

b) Lập phương trình hoành độ giao điểm:

x2 = 3mx + 1 - m2

<=> x2 - 3mx - 1 + m2 = 0

Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)

<=> (-3m)2 - 4.1.(-1 + m2) = 0

<=> 9m2 + 4 - 4m2 > 0

<=> 5m2 + 4 > 0\(\forall m\)

Ta có: x1 + x2 = 2x1x2 

Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)

<=> 3m = 2(-1 + m2)

<=> 3m = -2 + m2 

<=> 3m + 2 - m2 = 0

<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)

26 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-6x+m+4=0\)

\(\Delta'=9-\left(m+4\right)=-m+5\)

Để (P) cắt (d) tại 2 điểm pb khi \(5-m>0\Leftrightarrow m< 5\)

Theo Vi et \(\hept{\begin{cases}x_1+x_2=6\\x_1x_2=m+4\end{cases}}\)

Thay vào ta được \(6.2020-2021.\left(m+4\right)=2014\)

\(\Leftrightarrow4036-2021m=2014\Leftrightarrow m=\frac{2022}{2021}\)(tm) 

NV
26 tháng 3 2022

Pt hoành độ giao điểm: \(x^2-6x+m+4=0\) (1)

(P) cắt (d) tại 2 điểm pb khi: \(\Delta'=9-\left(m+4\right)>0\Rightarrow m< 5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+4\end{matrix}\right.\)

\(2020\left(x_1+x_2\right)-2021x_1x_2=2014\)

\(\Leftrightarrow2020.6-2021\left(m+4\right)=2014\)

\(\Rightarrow m=\dfrac{2022}{2021}\)

4 tháng 7 2020

Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình \(x^2-2mx+m^2-1=0\)

\(\Delta^`=1>0\)

\(\Rightarrow x_1=m+1,x_2=m-1\)

\(\Rightarrow y_1=m^2+2m+1,y_2=m^2-2m+1\)

\(\Rightarrow y_1-y_2>4\Leftrightarrow4m>4\Leftrightarrow m>1\)

Cofn trường hợp còn lại là m<1 cách giải tương tự