Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm (d) và (P) là:
\(x^2=-\left(m+2\right)x-m-1\)
\(\Leftrightarrow x^2+\left(m+2\right)x+m+1=0\)(1)
Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiêm phân biệt. Khi đó:
\(\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(m+1\right)=m^2>0\Leftrightarrow m\ne0\)
Với \(m\ne0\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2;x_1>x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m+1\end{cases}}\)
Do hai điểm nằm khác phía với trục tung nên \(x_1,x_2\)trái dấu nên \(m+1< 0\Leftrightarrow m< -1\).
\(\sqrt{y_1}+\sqrt{y_2}=\sqrt{x_1^2}+\sqrt{x_2^2}=\left|x_1\right|+\left|x_2\right|=x_1-x_2=2\)(do hai điểm nằm khác phía với trục tung)
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-m}{2}\\x_2=\frac{-m-4}{2}\end{cases}}\)
\(x_1x_2=-\frac{m}{2}\left(\frac{-m-4}{2}\right)=\frac{m\left(m+4\right)}{4}=m+1\Leftrightarrow m=\pm2\).
Vậy \(m=-2\).
Gọi đường thẳng \(y=2x-3\)là (d')
Để \(\left(d\right)//\left(d'\right)\Leftrightarrow\hept{\begin{cases}m-1=2\\2\ne-3\end{cases}}\) (luôn đúng)
\(\Leftrightarrow m=3\)
Vậy \(m=3\) thì đường thẳng (d) song song với đường thẳng \(y=2x-3\)
Học tốt
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
a) \(2x^3-5x^2+2x=0\)
<=> \(x\left(2x^2-5x+2\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\2x^2-5x+2=0\left(1\right)\end{cases}}\)
Giải (1) : \(\Delta=\left(-5\right)^2-4.2.2=9>0\)
pt (1) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x=\frac{5-\sqrt{9}}{2.2}=\frac{1}{2}\\x=\frac{5+\sqrt{9}}{2.2}=2\end{cases}}\)
Vậy có 3 nghiệm phân biệt...
b) \(\hept{\begin{cases}2x+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}2\left(-2-2y\right)+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow\hept{\begin{cases}-4-4y+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}y=3\\x=-8\end{cases}}}\)
d) phương trình có : \(\Delta=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Với mọi m
Như vậy phương trình có nghiệm với mọi m
Phương trình hoành độ giao điểm của (P) với (d):
\(\frac{-1}{4}x^2=\left(m+1\right)x+m^2+3\)
\(\Leftrightarrow x^2+4\left(m+1\right)x+4m^2+12=0\)
\(\Delta'=2^2\left(m+1\right)^2-4m^2-12\)
\(=4m^2+8m+4-4m^2-12\)
\(=8m-8\)
(P) và (d) không có điểm chung khi pt hoành độ giao điểm vô nghiệm.
\(\Leftrightarrow\Delta'< 0\Leftrightarrow8m-8< 0\)
\(\Leftrightarrow m< 1\)
Phương trình hoành độ giao điểm của (p) và (d) là
\(-\frac{1}{4}x^2=\left(m+1\right)x+m^2+3\)<=> \(\frac{1}{4}x^2+\left(m+1\right)x+m^2+3=0\)
\(\left(a=\frac{1}{4},b=m+1,c=m^2+3\right)\)
\(\Delta=b^2-4ac=\left(m+1\right)^2-4\cdot\frac{1}{4}\left(m^2+3\right)\)
\(=m^2+2m+1-m^2-3=2m-2\)
(p) và (d) không có điểm chung <=> \(\Delta< 0\)
<=> \(2m-2< 0\)<=> \(2m< 2\)<=> \(m< 1\)
Vậy với \(m< 1\)thì (p) và (d) không có điểm chung
- a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6 <=>-m-2-m+6=3 <=>-2m=-1 <=>m=1/2.
PT hoành độ giao điểm của (d) và (P) :\(x^2=2mx^{ }-m^2+m\Leftrightarrow x^2-2mx+m^2-m=0\left(1\right)\)
pt(1) có 2 nghiệm phân biệt \(\Rightarrow\Delta'>0\)
\(\Leftrightarrow m>0\) (\(\circledast\))
mat khac de pt (1) co 2 nghiem phan biet thoa \(2x_1+3x_2=6\)
\(\Rightarrow\left\{{}\begin{matrix}2x_1+3x_2=6\left(1\right)\\x_1+x_2=2m\left(2\right)\\x_1.x_2=m^2-m\left(3\right)\end{matrix}\right.\)
tu (1) va (2) \(\Rightarrow x_1=6\left(m-1\right);x_2=6-4m\)
thay x1 va x2 vao (3) \(\Rightarrow6\left(m-1\right)\left(6-4m\right)=m\left(m-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}m-1=0\\6\left(6-4m\right)=m\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{36}{25}\end{matrix}\right.thoa\left(\circledast\right)\)
vậy có 2 giá trị m=1 ;36/25 cần tìm
Phương trình hoành độ giao điểm:
x2=2(m+1)x-m2-9 \(\Leftrightarrow\) x2-2(m+1)x+m2+9=0.
Để d không cắt (P) thì \(\Delta\)'<0 \(\Leftrightarrow\) (m+1)2-(m2+9)<0 \(\Leftrightarrow\) m<4.