K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

xét pt hoành độ giao điểm : 

  x ^2 = 2(m-1)x +2m -5 

<=>  x ^2 - 2(m-1)x -2m +5  =0  (1)

- tính đen-ta 

-lí luận: vì d tiếp xúc P => pt (1) có ngiệm kép 

-cho đen-ta =0 => tính m

-thay gtrị m vừa tìm đc vào (1) => tìm x như bình thường

Bạn ghi rõ hơn được không?

d: y=-2x+m cái gì 1?

a: Thay x=0 và y=9 vào (d), ta được:

\(b+6\cdot0=9\)

hay b=9

Vậy: (d): y=6x+9

b: Phương trình hoành độ giao điểm là:

\(ax^2-6x-9=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)

Để (d) tiếp xúc với (P) thì 36a+36=0

hay a=-1

28 tháng 5 2022

`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`

`b)` Với `b=9=>(d):y=6x+9`

Xét ptr hoành độ của `(d)` và `(P)` có:

         `ax^2=6x+9`

`<=>ax^2-6x-9=0`       `(1)`

Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép

    `<=>\Delta' =0`

    `<=>(-3)^2-a.(-9)=0`

    `<=>a=-1` (t/m)

7 tháng 3 2017

Để (P) và (d) tiếp xúc với nhau thì phương trình \(\frac{-3x^2}{4}=\left(m-2\right)x+3\) có 1 nghiệm

\(\Leftrightarrow3x^2+\left(4m-8\right)x+12=0\)

Phương trình này có nghiệm kép khi:

\(\Delta'=\left(2m-4\right)^2-3.12=0\)

\(\Leftrightarrow m^2-4m-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=5\\m=-1\end{cases}}\)

Với m = 5 thì tọa độ giao điểm là: \(\left(-2;-3\right)\)

Với m = -1 thì tọa độ giao điểm là: \(\left(2;-3\right)\)

7 tháng 3 2017

Nghiệm kép  \(\Delta=0\Rightarrow\left(m-2\right)^2-4\frac{3.}{4}.3=0\Rightarrow\)\(\hept{\begin{cases}m-2=3\\m-2=-3\end{cases}}\)

\(\hept{\begin{cases}n=5\\m=-1\end{cases}}\)

3 tháng 6 2021

1. a, (nếu bạn cần hình vẽ thì ib mình nha)

b, MN =(d) \(\cap\) (P) là nghiệm của hệ

\(\left\{{}\begin{matrix}-2x+3=y\\x^2=y\end{matrix}\right.\)

\(\Rightarrow x^2=-2x+3\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)               \(\left[{}\begin{matrix}y=1\\y=9\end{matrix}\right.\)

M(1;1)             N(-3;9)

\(MN=\sqrt{\left(-3-1\right)^2+\left(9-1\right)^2}\)

\(=\sqrt{4^2+8^2}\)

=\(\sqrt{80}\)

2, a,

(P) và (d)+x nhau khi hệ có nghiệm

\(\left\{{}\begin{matrix}y=x^2\\y=-2x+m\end{matrix}\right.\)

\(\Leftrightarrow x^2=-2x+m\)(*)có nghiệm

\(\Leftrightarrow x^2+2x-m=0\)có nghiệm

\(\Leftrightarrow\Delta`\ge0\Leftrightarrow1-1.\left(-m\right)\ge0\)

\(\Leftrightarrow1+m\ge0\)

\(\Leftrightarrow m\ge-1\)

b, (d) và (P) cắt nhau tại 2 điểm phân biệt 

\(\Leftrightarrow\)phương trình (*) có \(\Delta`\ge0\):

\(\Leftrightarrow1+m>0\)

\(\Rightarrow\)m>-1

-Chúc bạn học tốt-

 

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)