K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2018

Phương trình hoành độ giao điểm:

\(x^2-x-m+2=x+4\Leftrightarrow x^2-2x-m-2=0\) (1)

Khi đó nghiệm \(x_1;x_2\) của (1) là hoành độ của A và B

\(\Rightarrow x_M=\dfrac{x_A+x_B}{2}=\dfrac{x_1+x_2}{2}=-\dfrac{-2}{2}=1\)

Do \(M\in d\Rightarrow y_M=x_M+4=1+4=5\)

Vậy tọa độ của M là \(M\left(1;5\right)\)

6 tháng 3 2022

Phân tích: Phương trình hoàn độ giao điểm: 

\(x^2+2x-3=x+m\Leftrightarrow x^2+x-3-m=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt A ; B 

=> (1) có 2 nghiệm phân biệt 

<=> \(\Delta>0\) \(\Leftrightarrow m>\dfrac{-13}{4}\left(2\right)\)

giả sử: \(A\left(x_1;y_1\right),B\left(x_2;y_2\right)\) với \(x_1;x_2\) là hai nghiệm của (1) Ta phải có :

\(\left(y_1-1\right)\left(y_2-2\right)< 0\Leftrightarrow\left(x_1+m-1\right)\left(x_2+m-1\right)< 0\)

\(\Leftrightarrow x_1x_2+\left(m-1\right)\left(x_1+x_2\right)+m^2-2m+1< 0\)

\(\Leftrightarrow m^2-4m-1< 0\Leftrightarrow2-\sqrt{5}< m< 2+\sqrt{5}\left(thỏa\left(2\right)\right)\)

\(m\in Z\Rightarrow m\in\left\{0;1;2;3;4\right\}\)

6 tháng 3 2022

Tại sao (y1-1)(y2-2)<0 ạ?

 

NV
14 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

13 tháng 4 2019

Phương trình hoành độ giao điểm:  - x 2 + 2 x + 3 = m x ⇔ x 2 + m - 2 x - 3 = 0 1

Dễ thấy (1) luôn có 2 nghiệm phân biệt vì  a c = 1 . - 3 = - 3 < 0

Khi đó (d) cắt (P) tại hai điểm phân biệt  A x 1 ; m x 1 B x 2 ; m x 2 , với  x 1 ,   x 2  là nghiệm phương trình (1). Theo Viét, có:  x 1 + x 2 = 2 - m , x 1 x 2 = - 3 x 1 x 2 = - 3

I là trung điểm

A B ⇒ I = x 1 + x 2 2 ; m x 1 + m x 2 2 = 2 − m 2 ; − m 2 + 2 m 2

I ∈ ( Δ ) : y = x − 3 ⇒ − m 2 + 2 m 2 = 2 − m 2 − 3 ⇔ m 2 − 3 m − 4 = 0

⇔ m = − 1 = m 1 m = 4 = m 2 ⇒ m 1 + m 2 = 3

Đáp án cần chọn là: D

14 tháng 6 2021

- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)

\(\Leftrightarrow x^2-3x+2-m=0\)

\(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)

- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)

Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)

- Ta có : \(OA^2+OB^2=10\)

\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)

\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)

\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)

\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)

\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)

\(\Leftrightarrow2m^2+10m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)

- Kết hợp ĐK (1) => m = 0 ( TM )

Vậy ...

 

 

Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0

hay m<>1

Phương trình hoành độ giao điểm là:

\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)

\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)

\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)

\(=4m^2-32m+64-4m^2+24m-20\)

\(=-8m+44\)

Để phương trình có hai nghiệm phân biệt thì -8m+44>0

=>-8m>-44

hay m<11/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)

\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)

\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)

\(\Leftrightarrow4m^2-8m+4-8m-44=0\)

\(\Leftrightarrow4m^2-16m-40=0\)

\(\Leftrightarrow m^2-4m-10=0\)

\(\Leftrightarrow\left(m-2\right)^2=14\)

hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)

13 tháng 6 2017

Phương trình hoành độ giao điểm:  x 2 − 2 x − 2 = x + m ⇔ x 2 − 3 x − 2 − m = 0

(d) cắt (P) tại hai điểm phân biệt A, B ⇔ Δ > 0 ⇔ 17 + 4 m > 0 ⇔ m > − 17 4

Giả sử (*) có hai nghiệm x 1 , x 2 thì x 1 + x 2 = − b a = 3 x 1 . x 2 = c a = − m − 2

= 18 − 4 ( − 2 − m ) + 6 m + 2 m 2 = 2 m 2 + 10 m + 26 = 2 m + 5 2 2 + 27 2 ≥ 27 2 với m > − 17 4

Vậy giá trị nhỏ nhất của O A 2 + O B 2 là 27 2  khi m = − 5 2

Đáp án cần chọn là: A

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

Lời giải:

PT hoành độ giao điểm:

\(x^2+4x-3-(-mx-3)=0\)

\(\Leftrightarrow x^2+x(4+m)=0\)

\(\Leftrightarrow x(x+4+m)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x=-(m+4)\end{matrix}\right.\)

Để 2 đths cắt nhau tại hai điểm pb thì \(-(m+4)\neq 0\leftrightarrow m\neq -4\)

Khi đó 2 điểm A,B là: \(A(0; -3); B(-m-4, m^2+4m-3)\)

Để trung điểm $I$ của $AB$ nằm trên trục $Ox$ thì \(y_I=0\)

\(\Leftrightarrow \frac{y_A+y_B}{2}=0\)

\(\Leftrightarrow \frac{-3+m^2+4m-3}{2}=0\)

\(\Leftrightarrow m^2+4m-6=0\Rightarrow m=-2\pm \sqrt{10}\)