Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề.
VD: n=2=> \(A=5^2\left(5^2+1\right)-6^2\left(3^2+2\right)=25.\left(25+1\right)-36.\left(9+2\right)=25.26-36.11=650-396254\)không chia hết cho 91
A=5^n^2+5^n-18n^2-6^n*2
= (5^n^2-18^n^2)+(5^n-12^n)
= -13^n^2-7^n
Mà -13^n^2-7^n chia hết cho 91 ( do chia hết cho 13 và 7)
=> A chia hết cho 91 ( đpcm)
k đúng cho mình nhé
vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5
có p(0) chí hết cho 5
=>a.03+b.02+c.0+d chia hết cho 5
=> d chia hết cho 5
có p(1) chia hết cho 5
=>a.13+b.12+c.1+d chia hết cho 5
=>a+b+c+d chia hết cho 5
mà d chia hết cho 5
=>a+b+c chia hết cho 5 (1)
có p(-1) chia hết cho 5
=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5
=>-a+b-c+d chia hết cho 5
mà d chia hết cho 5
=>-a+b-c chia hết cho 5 (2)
Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5
=> 2b chia hết cho 5
mà ucln(2,5)=1
=> b chia hết cho 5
mà a+b+c chia hết cho 5
=> a+c chia hết cho 5 (3)
có p(2) chia hết cho 5
=>a.23+b.22+c.2+d chia hết cho 5
=> 8a + 4b+2c+d chia hết cho 5
mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)
=>8a+2c chia hết cho 5
=>2(4a+c) chia hết cho 5
mà ucln(2,5)=1
=>4a+c chia hết cho 5 (4)
Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5
=> 3a chia hết cho 5
ma ucln(3,5)=1
=> a chia hết cho 5
mà a+c chia hết cho 5
=> c chia hết cho 5
Vậy a,b,c,d chia hết cho 5
vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5
có p(0) chí hết cho 5
=>a.03+b.02+c.0+d chia hết cho 5
=> d chia hết cho 5
có p(1) chia hết cho 5
=>a.13+b.12+c.1+d chia hết cho 5
=>a+b+c+d chia hết cho 5
mà d chia hết cho 5
=>a+b+c chia hết cho 5 (1)
có p(-1) chia hết cho 5
=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5
=>-a+b-c+d chia hết cho 5
mà d chia hết cho 5
=>-a+b-c chia hết cho 5 (2)
Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5
=> 2b chia hết cho 5
mà ucln(2,5)=1
=> b chia hết cho 5
mà a+b+c chia hết cho 5
=> a+c chia hết cho 5 (3)
có p(2) chia hết cho 5
=>a.23+b.22+c.2+d chia hết cho 5
=> 8a + 4b+2c+d chia hết cho 5
mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)
=>8a+2c chia hết cho 5
=>2(4a+c) chia hết cho 5
mà ucln(2,5)=1
=>4a+c chia hết cho 5 (4)
Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5
=> 3a chia hết cho 5
ma ucln(3,5)=1
=> a chia hết cho 5
mà a+c chia hết cho 5
=> c chia hết cho 5
\(f\left(-1\right)=a\left(-1\right)^2+b.\left(-1\right)+c\)
\(=a-b+c\)
\(f\left(2\right)=a.2^2+b.2+c\)
\(=4a+2b+c\)
\(\Rightarrow f\left(2\right)-2.f\left(-1\right)=\left(4a+2b+c\right)-2\left(a-b+c\right)\)
\(=2a+4b-c=0\)
\(\Rightarrow f\left(2\right)=2.f\left(-1\right)\)
\(\Rightarrow f\left(2\right)\)và \(2.f\left(-1\right)\)cùng dấu
\(\Rightarrow f\left(2\right)\)và \(f\left(-1\right)\)cùng dấu
\(\Rightarrow f\left(2\right).f\left(-1\right)\ge0\)(đpcm)
Ta có :\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)
\(\implies\) \(f\left(2\right)-2f\left(-1\right)=\left(4a+2b+c\right)-2.\left(a-b+c\right)\)
\(\implies\) \(f\left(2\right)=2.f\left(-1\right)\)
\(\implies\) \(f\left(-1\right).f\left(2\right)=f\left(-1\right).2f\left(-1\right)=f\left(-1\right)^2.2\) \(\geq\) \(0\)
\(\implies\) \(f\left(-1\right).f\left(2\right)\) \(\geq\) \(0\) \(\left(đpcm\right)\)
Phải sửa đề là chia hết cho 8 nha,mk có thử lại rồi: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n\left(n+4\right)-1\left(n+4\right)-n\left(n+1\right)+4\left(n+1\right)\)
\(=n^2+4n-n+4-n^2+n+4n+4\)
\(=\left(n^2-n^2\right)+\left(4n+4n\right)+\left(n-n\right)+\left(4+4\right)\)
\(=0+8n+0+8\)
\(=8n+8\)
\(=8\left(n+8\right)⋮8\rightarrowđpcm\)
thế này mới đúng nè đầu bài đúng đó không sai đâu
(n-1)(n+4)-(n-4)(n+1)
=n(n+4)+(-1)(n+4)-((n(n+1)+(-4)(n+1)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
=\(=n^2+4n-n-4-n^2-n+4n+4\)
=\(=\left(n^2-n^2\right)+\left(4n+4n-n-n\right)+\left(-4+4\right)\)=6n chia hết cho 6 với mọi n thuộc Z
Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)
Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)