\(P=3+3^3+3^5+...+3^{1991}\)

CMR: a)\(P⋮13\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

a)

\(P=3+3^3+3^5+...+3^{1991}\)

\(P=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(P=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)

\(P=273+3^6\cdot273+...+3^{1986}\cdot273\)

\(P=13\cdot21+3^6\cdot13\cdot21+...+2^{1986}\cdot13\cdot21\)

\(P=13\left(21+3^6\cdot21+...+3^{1986}\cdot21\right)⋮13\) (đpcm)

b)

\(P=3+3^3+3^5+...+3^{1991}\)

\(P=\left(3+3^5\right)+\left(3^3+3^7\right)+...+\left(3^{1987}\cdot3^{1991}\right)\)

\(P=\left(3+3^5\right)+3^2\left(3+3^5\right)+...+3^{1986}\left(3+3^5\right)\)

\(P=246+3^2\cdot246+...+3^{1986}\cdot246\)

\(P=41\cdot6+3^2\cdot41\cdot6+...+3^{1986}\cdot41\cdot6\)

\(P=41\left(6+3^2\cdot6+...+3^{1986}\cdot6\right)⋮41\) (đpcm)

Vậy ...

=))

11 tháng 10 2017

a/ Ta co: \(B=3+3^3+3^5+...+3^{1987}+3^{1989}+3^{1991}\)

\(\Rightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(\Rightarrow B=3\cdot\left(1+3^2+3^4\right)+...+3^{1987}\cdot\left(1+3^2+3^4\right)\)

\(\Rightarrow B=3\cdot91+...+3^{1987}\cdot91\)

\(\Rightarrow B=91\cdot\left(3+...+3^{1987}\right)\)

\(\Rightarrow13\cdot7\cdot\left(3+...+3^{1987}\right)⋮13\left(dpcm\right)\)

25 tháng 7 2017

Bài 1:

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)

\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{100}}\)

Lây vế trừ vế, ta được:

\(A-\dfrac{1}{5}A=\dfrac{4}{5}A\)

\(\dfrac{4}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{100}}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{5}-\dfrac{1}{5^{100}}}{\dfrac{4}{5}}=\dfrac{\dfrac{1}{5}.\left(1-\dfrac{1}{5^{99}}\right)}{\dfrac{1}{5}.4}=\dfrac{1-\dfrac{1}{5^{99}}}{4}\)

Vậy \(A=\dfrac{1-\dfrac{1}{5^{99}}}{4}\).

Chúc bạn học tốt!

25 tháng 7 2017

Bài 2:

Có:

\(B=3+3^3+3^5+...+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)

\(\Leftrightarrow B=273+...+3^{1986}.273\)

\(\Leftrightarrow B=273\left(1+...+1986\right)\)

\(273⋮13\)

Nên \(B=273\left(1+...+1986\right)⋮13\)

Vậy \(B⋮13\)

Lại có:

\(B=3+3^3+3^5+...+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\)

\(\Leftrightarrow B=2460+...+3^{1984}.2460\)

\(\Leftrightarrow B=2460\left(1+...+3^{1984}\right)\)

\(2460⋮41\)

Nên \(B=2460\left(1+...+3^{1984}\right)⋮41\)

Vậy \(B⋮41\).

Chúc bạn học tốt!

16 tháng 10 2017

\(C=1+3+3^2+3^3+......+3^{11}\)

\(C=\left(1+3+3^2\right)+.......+\left(3^9+3^{10}+3^{11}\right)\)

\(C=13.\left(1+3+3^2\right)+........+13.\left(1+3+3^2\right)\)

Mà 13 \(⋮\)13 => C \(⋮\)13

Tương tự với câu b

16 tháng 10 2017

b) \(C=1+3+3^2+3^3+.......+3^{11}\)

\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(C=40.\left(1+3+3^2+3^3\right)+......+40.\left(1+3+3^2+3^3\right)\)

Mà 40 \(⋮\)40 => C \(⋮\)40

22 tháng 2 2020

    A = 2 + 22 + 23 +......+ 260

-> A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 259 + 260 )

-> A = 2.( 1+2 ) + 23.( 1+2) +......+ 259.( 1+2)

-> A = 2.3 + 23.3 +......+ 259.3

-> A= 3.( 2 + 23 +.....+ 259)

      Vì 3 chia hết cho 3

-> 3.( 2 + 23 +...+259)

      Vậy  A chia hết cho 3

    

   A = 2 + 22  + 23 +.......+ 260

-> A = ( 2 + 22 + 23 ) +.......+ ( 258 + 259 + 260 )

-> A = 2.( 1 + 2 + 22 ) +......+  258 .( 1 + 2 + 22 )

-> A = 2.7 +.....+ 258.7

-> A = 7.( 2 + .....+ 258 )

      Vì 7 chia hết cho 7

-> 7.( 2+....+ 258 )

     Vậy A chia hết cho 7

    A = 2 + 22 + 23 +......+ 260

-> A = ( 2 + 22 + 23 + 24 ) +.....+ ( 257 + 258 + 259 + 260 )

-> A = 2.( 1 + 2 + 22 + 23 ) +.....+ 257.( 1+ 2 + 22 + 23 )

-> A = 2.15 + ......+ 257.15

-> A = 15.( 2 +.... + 257 )

     Vì 15 chia hết cho 15

-> 15.( 2 +....+ 257 )

     Vậy A chia hết cho 15

27 tháng 9 2018

a,

\(\left(n+3\right)⋮\left(n-2\right)\\ \Rightarrow\left(n-2\right)+5⋮\left(n-2\right)\\ \Rightarrow5⋮\left(n-2\right)\\ \Rightarrow\left(n-2\right)\in\left\{{}\begin{matrix}5\\-5\\1\\-1\end{matrix}\right.\\ \Rightarrow n\in\left\{{}\begin{matrix}7\\-3\\4\\2\end{matrix}\right.\)

vì là số tự nhiên nên

\(n\in\left\{{}\begin{matrix}7\\4\\2\end{matrix}\right.\)

27 tháng 9 2018

b,

\(\text{ ( 2n + 9 ) ⋮ ( n - 3 )}\\ \Rightarrow2\left(n-3\right)+15⋮\left(n-3\right)\\ \Rightarrow15⋮\left(n-3\right)\\ \Rightarrow\left(n-3\right)\inƯ\left(15\right)=\left\{15;5;3;1;-1;-3;-5;-15\right\}\\ \Rightarrow n\in\left\{18;8;6;4;2;0;-2;-13\right\}\)

vì n là số tự nhiên nên:

\(n\in\left\{18;8;6;4;2;0\right\}\)

11 tháng 12 2018

3B=3^1+3^2+3^3+.....+3^119+3^120

3B-B=(3^1+3^2+3^3+.....+3^119+3^120)-(1+3^1+3^2+3^3+.....+3^119)

2B=3^120-1

B=3^120-1/2

\(B=1+3^1+3^2+...+3^{118}+3^{119}\)

\(3B=3+3^2+3^3+..+3^{120}\)

\(3B-B=\left(3+3^2+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)

\(2B=1+3^{120}\)

14 tháng 10 2018

[ ( 27 - 13 ) x 4 + 12] x 3

=[ 14 x4 + 12] x 3

=[ 56 +12 ] x 3

= 68 x 3

= 204

   [ ( 27 - 13 ) x 4 + 12 ] x 3

= [ 14 x 4 + 12 ] x 3

= [ 56 + 12 ] x 3

= 68 x 3

= 204

                       Học tốt !