![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì p là số nguyên tố lớn hơn 3 nên p chia cho 3 dư 1 hoặc 2
+) \(p\equiv2\left(mod3\right)\)
\(\Rightarrow p+4\equiv6\left(mod3\right)\equiv0\left(mod3\right)\)
\(\Rightarrow p+4⋮3\)
Mà \(p+4>3\) nên \(p+4\) là hợp số (loại)
\(\Rightarrow p\equiv1\left(mod3\right)\)
\(\Rightarrow p+8\equiv9\left(mod3\right)\)
\(\Rightarrow p+8⋮3\)
Vì p + 8 > 3
\(\Rightarrow\)p + 8 là hợp số (đpcm)
b) (d + 2c + 4b) như thế mới đúng chứ nhỉ?!
Ta có: \(\overline{abcd}=1000a+100b+10c+d\)
\(=4b+2c+d+1000a+96b+8c\)
Mà \(1000a⋮8\); \(96b⋮8\)và \(8c⋮8\)
\(\Rightarrow4b+2c+d⋮8\)
\(\Rightarrow\overline{abcd}⋮8\) (đpcm)
Nếu bạn thấy mình làm khó hiểu câu a thì để mình làm cách khác
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0
Với p = 3k + 2
=> p + 4 = 3k + 6 chia hết cho 3
p + 4 > 3 => p + 4 là hợp số
=> p = 3k + 2 (loại)
=> p = 3k + 1
=> p + 8 = 3k + 9 chia hết cho 3
Mà p + 8 > 3 nên p + 8 là hợp số (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
abcd = 1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = (1000a + 96b + 8c) + (d + 2c + 4b)
Mà d + 2c + 4b chia hết cho 8 theo đề bài
Và 1000a + 96b + 8c cũng chia hết cho 8
=> abcd chia hết cho 8
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)
Nếu p có dạng 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3 ( k + 2 ) là hợp số
=>p không có dạng 3k + 2
=>p có dạng 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3 ) là hợp số ( đpcm )
b)
Ta có:
abcd =1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = ( 1000a + 96b + 8c ) + ( d + 2c + 4b ) = 8 ( 125a + 12b + c ) + ( d + 2c + 4b )
Vì 8 ( 125a + 12b + c ) chia hết cho 8
Mà ( d + 2c + 4b ) chia hết cho 8
=> 8 ( 125a + 12b + c ) + ( d + 2c + 4b ) chia hết cho 8
hay abcd chia hết cho 8 ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(p>3\) nên p không chia hết cho 3 khi đó p có dạng
\(3k+1\) hoặc \(3k+2\) \(k\in N\)
\(\cdot\)) Nếu \(p=3k+1\)
Nếu d chia 3 dư 1 thì \(p+2d⋮3\left(loai\right)\)
Vì p+2d là số nguyên tố nên loại
Vậy \(p=3k+1\) thì \(d⋮3\)
Tương tự với \(p=3k+2\) thì \(d⋮3\)
Vậy \(p>3\) và \(p;p+d;p+2d\) là các số nguyên tố thì \(p⋮3\left(1\right)\)
p lẻ p+d nguyên tố thì p+d lẻ nên d chẵn do đó \(d⋮2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có \(d⋮6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
p là số nguyên tố > 3 => p lẻ
p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2
+) Xét p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố
Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố
=> d chia hết cho 3
+) Xét p = 3k + 2
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt
=> d chia hết cho 3
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
Vì p,p+d,p+2d là số nguyên tố >3 nên p,p+d,p+2d ko chia hết cho 3
=>p,p+d,p+2d khi : cho 3 thì có số dư là 1 và 2
=>trong 3 số p,p+d,p+2d có ít nhất 2 số có cùng số dư( định lí Đi-rec-lê thì phải (mk ko nhớ mấy))
+)nếu p và p+d cùng số dư =>(p+d)-p chia hết cho 3 hay d chia hết cho 3
+)nếu p và p+2d cùng số dư =>(p+2d)-p chia hết cho 3 hay 2d chia hết cho 3=> d chia hết cho 3 ( vì (2,3)=1)
+)nếu p+d và p+2d cùng số dư=>(p+2d)-(p+d) chia hết cho 3 hay p chia hết cho 3
=>d chia hết cho 3 (1)
Vì p,p+d,p+2d là số nguyên tố > 3 =>p,p+d,p+2d ko chia hết cho 2=>(p+d)-p chia hết cho 2 hay d chia hết cho 2 (2)
Từ (1) và (2)=> d chia hết cho 6 ( vì (2,3)=1)
![](https://rs.olm.vn/images/avt/0.png?1311)
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Vì p là số nguyên tố > 3 => p có dạng 3k + 1 hoặc 3k +2 ( k thuộc N)
+) Trường hợp: p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3n + 1 => p + 2d = 3k + 1 + 6n + 2 = 3k + 6n + 3 chia hết cho 3 (mâu thuẫn với p+ 2d là số nguyên tố)
Nếu d chia cho 3 dư 2 => d = 3n + 2 => p + d = 3k + 1 + 3n + 2 = 3k + 3n + 3 chia hết cho 3 (Mâu thuẫn)
Vậy d chia hết cho 3
+) Trường hợp : p = 3k + 2. Tương tự ta có: d chia hết cho 3
=> d chia hết cho 3
Mà p; p + d là số nguyên tố => lẻ => p+ d - p = d chẵn hay d chia hết cho 2
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
Giả sử tồn tại các số nguyên x,y sao cho x^2+5=y^3.
Nếu x lẻ thì y chẵn, nhưng khi đó, x^2+5 chia 8 dư 6 còn y^3 chia hết cho 8, vô lí.
Nếu x chẵn thì y lẻ.
---Nếu y chia 4 dư 3 thì y^3 chia 4 dư 3, nhưng x^2+5 chia 4 dư 1, vô lí.
---Nếu y chia 4 dư 3 thì y^2+y+1 chia 4 dư 3
Suy ra x^2+4 =y^3 – 1 = (y – 1)(y^2+y+1) có ước nguyên tố dạng 4k+3, vô lí.
Vậy không tồn tại các số nguyên x,y sao cho x^2+5=y^3.