\(P=1+5^0+5^1+5^2+5^3+...+5^{100}\).Hỏi P có phải số chính phương hay không? Vì sao?<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2023

P = 1 + 50 + 51 + 52 + 53 +.......+5100

P = 1 + 1 + ( 51 + 52 + 53+........+5100)

P = 2 + 5.( 1 + 5 + 52 +..........+599)

Vì 5.( 1 + 5 + 52+......+599) ⋮ 5 ⇒ P  : 5 dư 2

Một số chính phương chia 5 chỉ có thể dư 1 hoặc 4 mà p chia 5 dư 2 vậy p không phải là số chính phương

 

 

29 tháng 8 2015

B=[(2n-1-1):2+1].(2n-1+1):2

  =n.2n:2

  =n2

B là 1 số chính phương

17 tháng 9 2017

a) B =\(\frac{\left\{\left(2n-1+1\right)\cdot\left[\frac{\left(2n-1-1\right)}{2}+1\right]\right\}}{2}\)

       =\(\frac{\left[2n\cdot\left(n-1+1\right)\right]}{2}=n^2\)

b) B là số chính phương.

25 tháng 7 2015

\(A=5+5^2+5^3+..+5^{100}\)

\(5A=5^2+5^3+..+5^{101}\)

\(4A=\left(5^2-5^2\right)+...+5^{101}-5\)

\(A=\frac{5^{101}-5}{4}\)

=> A không phải số chính phương

25 tháng 7 2015

Ta có:

A = 5 + 5^2 + 5^3 + ... + 5^100

5A = 5^2 + 5^3 + 5^4 + ... + 5^101

5A - A = (5^2 + 5^3 + 5^4 + ... + 5^101) - (5 + 5^2 + 5^3 + ... + 5^100)

4A = 5^101 - 5 

5^101 tận cùng là 25 => 5^101 - 5 có tận cùng là 20 có 1 số 0 đứng cuối => A không thể là số chính phương vì nếu A là số chính phương thì 4A cũng là số chính phương (vì 4 = 2^2) và A chỉ có 1 sô 0 đứng cuối mà không có số chính phương nào chỉ có 1 số 0 đứng cuối

Vậy A không phải là số chính phương

NM
14 tháng 1 2022

ta chứng minh \(A=n^2\)

thật vậy

với n=1 , thì \(A=1=1^2\) đúng

ta giả sử đẳng thức đúng tới k ,tức là : 

\(1+3+5+..+2k-1=k^2\)

Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)

vậy đẳng thức đúng với k+1

theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương

T
Tai
VIP
27 tháng 7 2023

 

 Ta có: A = 5 + 52 + 5+....+ 5100

      ⇒�=(5+52)+(53+54)+...+(599+5100)A=(5+52)+(53+54)+...+(599+5100)

       ⇒�=5(1+5)+53.(1+5)+...+599.(1+5)A=5(1+5)+53.(1+5)+...+599.(1+5)

       ⇒�=5.6+53.6+...+599.6A=5.6+53.6+...+599.6

              �=6.(5+53+...+599)A=6.(5+53+...+599) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

23 tháng 10 2024

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b

14 tháng 8

a; A = 5 + 5\(^2\) + 5\(^3\) + ... + 5\(^{100}\)

A = 5.(1 + 5+ 5\(^2\) + ... + 5\(^{99}\))

A ⋮ 1; 5; A Vậy A là hợp số.

b; A = 5 + 5\(^2\) + 5\(^3\) + ... + 5\(^{100}\)

A = 5 + (5\(^2\) + 5\(^3\) + ... + 5\(^{100}\))

A = 5 + 5\(^2\).(1 + 5 + 5\(^2\) +...+ 5\(^{98}\))

A ⋮ 5; A không chia hết cho 5\(^2\)

Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì sẽ chia hết cho bình phương của số nguyên tố đó.


14 tháng 8

a. Số A là số nguyên tố hay hợp số?

Đáp án: A là hợp số

b. Số A có phải là số chính phương không?

Đáp án: A không phải là số chính phương

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi