Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, thay m= -5 vào d ta đc
y = 2 ( - 5 + 3 ) x +10 +2= -4x + 12
xét pt hđ gđ của P và d ta đc
x2 = -4x + 12
x2 + 4x - 12 = 0
\(\Delta\)= 16 + 4. 12=64
\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{-4+\sqrt{64}}{2}\)= 2 \(\Rightarrow\)y1 = 4
x2 = \(\frac{-4-\sqrt{64}}{2}\)= -6 \(\Rightarrow\)y2 = 36
vậy vs m = -5 thì d cắt p tại 2 điểm pb ( 2; 4 ) và ( -6 ; 36)
b, xét pt hđ gđ của P và d ta đc
x2 = 2(m+3)x - 2m +2
x2 - 2(m+3)+2m - 2= 0
\(\Delta\)= 4 ( m+3)2 - 4 ( 2m-2)
=4(m2 + 6m +9 )- 4m + 8
= 4m2 + 24m + 36 - 4m + 8
= 4m2 + 20m + 44
=4m2 + 2. 2m. 5 + 25 +19
= (2m+5)2 + 19 > 0 với mọi m
\(\)\(\Rightarrow\)d luôn cắt p tại 2 điểm pb vs mọi m
d cắt P tại 2 điểm có hđ dương \(\Rightarrow\)pt có 2 nghiệm dương
để pt có 2 nghiệm dương khi và chỉ khi \(\hept{\begin{cases}\Delta\ge0\\x_{1_{ }}+x_2>0\\x_1.x_2>0\end{cases}}\)\(\hept{\begin{cases}2\left(m+3\right)>0\\2m-2>0\end{cases}}\Rightarrow\)\(\hept{\begin{cases}m+3>0\\2m>2\end{cases}}\)
\(\Rightarrow\) \(\hept{\begin{cases}m>-3\\m>1\end{cases}}\)\(\Rightarrow\)m >1
# mã mã#
đenta= (-(m+3))2-1.(2m-2)=m2+6m+9-2m+2=m2+4m+5
=(m+2)2+1>/1>0
a: Khi m=1 thì (d): y=2x-1+2=2x+1
Khi m=1 thì (d'): y=-x-2
Phương trình hoành độ giao điểm là:
2x+1=-x-2
=>3x=-3
hay x=-1
=>y=-2+1=-1
b: Phương trình hoành độ giao điểm là:
\(2x-1+2m=-x-2m\)
=>3x-1+4m=0
=>3x=1-4m
=>x=(1-4m)/3
Để x dương thì 1-4m>0
hay m<1/4
Pt hoành độ giao điểm: \(x^2-2\left(m-1\right)x-2m-4=0\)
a/ Bạn tự thế số và giải
b/ \(\Delta'=\left(m-1\right)^2+2m+4=m^2+5>0;\forall m\)
Pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m-4\end{matrix}\right.\)
\(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4\left(m-1\right)^2-2\left(-2m-4\right)=4\)
\(\Leftrightarrow4m^2-4m+8=0\) (vô nghiệm)
Vậy ko tồn tại m thỏa mãn
a: Thay x=0 và y=0 vào (d), ta được
\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)
\(\Leftrightarrow m^2-2m=0\)
=>m=0 hoặc m=2
b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)
\(\Rightarrow y=2\cdot2x-9+6=4x-3\)
Phương trình hoành độ giao điểm là:
\(x^2-4x+3=0\)
=>x=1 hoặc x=3
Khi x=1 thì y=1
Khi x=3 thì y=9
b: Khi m=2 thì \(y=\left(2\cdot2-1\right)x-2^2+2=3x-2\)
Phương trình hoành độ giao điểm là:
\(x^2-3x+2=0\)
=>x=2 hoặc x=1
Khi x=2 thì y=4
Khi x=1 thì y=1
c: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-1\right)x+m^2-2=0\)
\(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8=-4m+9\)
Để (P) cắt (d) tại hai điểm phân biệt thì -4m+9>0
=>-4m>-9
hay m<9/4