K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, thay m= -5 vào d ta đc

y = 2 ( - 5 + 3 ) x +10 +2= -4x + 12

xét pt hđ gđ của P và d ta đc

x2 = -4x + 12

x2 + 4x - 12 = 0

\(\Delta\)= 16 + 4. 12=64

\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{-4+\sqrt{64}}{2}\)= 2 \(\Rightarrow\)y1 = 4

                                     x2 = \(\frac{-4-\sqrt{64}}{2}\)= -6 \(\Rightarrow\)y2 = 36

vậy vs m = -5 thì d cắt p tại 2 điểm pb ( 2; 4 ) và ( -6 ; 36)

b, xét pt hđ gđ của P và d ta đc

x2 = 2(m+3)x - 2m +2

x2 - 2(m+3)+2m - 2= 0

\(\Delta\)= 4 ( m+3)2 - 4 ( 2m-2)

       =4(m2 + 6m +9 )- 4m + 8

       = 4m2 + 24m + 36 - 4m + 8

       = 4m2 + 20m + 44

         =4m2 + 2. 2m. 5 + 25 +19

            = (2m+5)2 + 19 > 0 với mọi m

\(\)\(\Rightarrow\)d luôn cắt p tại 2 điểm pb vs mọi m

d cắt P  tại 2 điểm có hđ dương \(\Rightarrow\)pt có 2 nghiệm dương

để pt có 2 nghiệm dương khi và chỉ khi \(\hept{\begin{cases}\Delta\ge0\\x_{1_{ }}+x_2>0\\x_1.x_2>0\end{cases}}\)\(\hept{\begin{cases}2\left(m+3\right)>0\\2m-2>0\end{cases}}\Rightarrow\)\(\hept{\begin{cases}m+3>0\\2m>2\end{cases}}\)

                                                           \(\Rightarrow\)        \(\hept{\begin{cases}m>-3\\m>1\end{cases}}\)\(\Rightarrow\)m >1

# mã mã#

29 tháng 4 2019

đenta= (-(m+3))2-1.(2m-2)=m2+6m+9-2m+2=m2+4m+5

                                                                       =(m+2)2+1>/1>0

a: Khi m=1 thì (d): y=2x-1+2=2x+1

Khi m=1 thì (d'): y=-x-2

Phương trình hoành độ giao điểm là:

2x+1=-x-2

=>3x=-3

hay x=-1

=>y=-2+1=-1

b: Phương trình hoành độ giao điểm là:

\(2x-1+2m=-x-2m\)

=>3x-1+4m=0

=>3x=1-4m

=>x=(1-4m)/3

Để x dương thì 1-4m>0

hay m<1/4

18 tháng 3 2017

xét pt hoành độ giao điểm : 

  x ^2 = 2(m-1)x +2m -5 

<=>  x ^2 - 2(m-1)x -2m +5  =0  (1)

- tính đen-ta 

-lí luận: vì d tiếp xúc P => pt (1) có ngiệm kép 

-cho đen-ta =0 => tính m

-thay gtrị m vừa tìm đc vào (1) => tìm x như bình thường

NV
15 tháng 4 2020

Pt hoành độ giao điểm: \(x^2-2\left(m-1\right)x-2m-4=0\)

a/ Bạn tự thế số và giải

b/ \(\Delta'=\left(m-1\right)^2+2m+4=m^2+5>0;\forall m\)

Pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m-4\end{matrix}\right.\)

\(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow4\left(m-1\right)^2-2\left(-2m-4\right)=4\)

\(\Leftrightarrow4m^2-4m+8=0\) (vô nghiệm)

Vậy ko tồn tại m thỏa mãn

a: Thay x=0 và y=0 vào (d), ta được

\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)

\(\Leftrightarrow m^2-2m=0\)

=>m=0 hoặc m=2

b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)

\(\Rightarrow y=2\cdot2x-9+6=4x-3\)

Phương trình hoành độ giao điểm là:

\(x^2-4x+3=0\)

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

b: Khi m=2 thì \(y=\left(2\cdot2-1\right)x-2^2+2=3x-2\)

Phương trình hoành độ giao điểm là:

\(x^2-3x+2=0\)

=>x=2 hoặc x=1

Khi x=2 thì y=4

Khi x=1 thì y=1

c: Phương trình hoành độ giao điểm là:

\(x^2-\left(2m-1\right)x+m^2-2=0\)

\(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8=-4m+9\)

Để (P) cắt (d) tại hai điểm phân biệt thì -4m+9>0

=>-4m>-9

hay m<9/4