Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Parabol thì tự vẽ đi chứ
Mấy câu hỏi toàn câu cô giáo dạy hết rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
3) tính khoảng cách từ A đến O khoảng cách đó = k/c từ C đến O
suy ra dc: xC2+yC2=5
Mà C là điểm đối xứng của A qua trục tung nên yC=-1
Tìm dc xC thế vào (P) xong 1 nốt nhạt còn 1 nốt nữa
tính từng khoảng cách AB,BC,AC rồi dùng pytago đảo c/m nó vuông
rồi so sánh 2 cgv coi thử nếu = nhau =>nó là t/g vuông cân
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1 Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x^ 2 = mx + 1
<=> x 2 - mx - 1 = 0
Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1: d1 cắt d2 tại 1 điểm trên trục tung => \(a\ne a';b=b'\)
<=> \(m\ne3\)và \(5-m=m-1\Leftrightarrow2m=6\Leftrightarrow m=3\)(k t/m dk) => k có m thỏa mãn để d1 cắt d2 tại 1 điểm trên trục tung.
bài 2:ĐK: m khác -1
hoành độ giao điểm A là nghiệm của pt:
\(\left(m+1\right)x^2=3x+1\Leftrightarrow\left(m+1\right)x^2-3x+1=0\)(1)
tại 1 điểm có hoành độ =2 => thay x=2 vào pt (1) ta có: \(4\left(m+1\right)-6+1=0\Leftrightarrow4m+4-6+1=0\Leftrightarrow4m=1\Leftrightarrow m=\frac{1}{4}\)(t/m đk)
=> 2 đồ thị cắt nhau tại.... bằng 2 <=> m=1/4
![](https://rs.olm.vn/images/avt/0.png?1311)
Hoành độ giao điểm của (d) và (P) là nghiệm phương trình:
\(\frac{1}{2}x^2=mx+2\)
<=> \(\frac{1}{2}x^2-mx-2=0\)
<=> \(x^2-2mx-4=0\)(1)
có: \(\frac{c}{a}=-4< 0\)=> phương trình có 2 nghiệm trái dấu
=> Giao điểm A và B của d và (P) là 2 điểm nằm ở 2 phía của trục tung
Gọi a; b lần lượt là hoành độ của A và B => a; b là 2 nghiệm của phương trình (1)
=> H( a; 0) ; K ( b; 0) => HK = OH + OK = |a| + |b|
Ta có G là giao điểm của Oy và (d) => G( 0: 2 ) => GO = 2
S (GHK) = \(\frac{1}{2}GO.HK=\left|a\right|+\left|b\right|\)
Theo bài ra ta có: \(\left|a\right|+\left|b\right|=4\)
<=> \(\left(\left|a\right|+\left|b\right|\right)^2=16\)
<=> \(\left(a+b\right)^2-2ab+2\left|ab\right|=16\)
<=> \(\left(a+b\right)^2-4ab=16\)
<=> (2m)^2 +4.4 = 16
<=> m = 0
vậy ...