Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay A(1; -9) vào (d), ta có:
-9 = 3m + 1 - m2
<=> -9 - 3m - 1 + m2 = 0
<=> -10 - 3m + m2 = 0
<=> m = 5 hoặc m = -2
b) Lập phương trình hoành độ giao điểm:
x2 = 3mx + 1 - m2
<=> x2 - 3mx - 1 + m2 = 0
Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)
<=> (-3m)2 - 4.1.(-1 + m2) = 0
<=> 9m2 + 4 - 4m2 > 0
<=> 5m2 + 4 > 0\(\forall m\)
Ta có: x1 + x2 = 2x1x2
Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)
<=> 3m = 2(-1 + m2)
<=> 3m = -2 + m2
<=> 3m + 2 - m2 = 0
<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)
1. ko bao h
2. pt hoành độ x^2-2x-m^2-1=0
đẻnta=1+m^2+1>0
=>.............................
3.Xét viet pt hoành độ đi
\(\left(d\right):y=kx+b\)
(d) đi qua N(-1;-2) nên ta có: \(-k+b=-2\Leftrightarrow k=b+2\)
\(\Rightarrow\left(d\right):y=\left(b+2\right)x+b\)
a)Hoành độ của A và B là 2 nghiệm của pt: \(x^2+\left(b+2\right)x+b=0\)
\(\Delta=\left(b+2\right)^2-4b=b^2+4>0\)
Vậy đường thẳng (d) luôn cắt (P) tại 2 điểm A\(\left(x_1;y_1\right)\) và B\(\left(x_2;y_2\right)\)
A, B nằm về 2 phía trục tung=>\(x_1,x_2\) trái dấu
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-b-2\left(1\right)\\x_1x_2=b\left(2\right)\end{matrix}\right.\)
Từ (1) suy ra \(b< 0\Leftrightarrow k-2< 0\Leftrightarrow k< 2\)
b)Ta có: \(y_1=-x_1^2;y_2=-x_2^2\)
\(\Rightarrow x_1+y_1+x_2+y_2=x_1-x_1^2+x_2-x_2^2\\ =\left(x_1+x_2+2x_1x_2\right)-\left(x_1+x_2\right)^2\\ =\left(-b-2+2b\right)-\left(b+2\right)^2\\ =b-2-b^2-4b-4\\ =-b^2-3b-6=-\left(b+\dfrac{3}{2}\right)^2-\dfrac{15}{4}\)
\(\Rightarrow\)S đạt GTLN khi\(b=-\dfrac{3}{2}\Leftrightarrow k=\dfrac{1}{2}\)
Xét phương trình hoành độ giao điểm của (P) và (d) :
\(x^2+2x+m=0\)\(\Delta'=4-m\)
Vì (P) và (d) cắt nhau tại hai điểm phân biệt nên \(\Delta'>0\Rightarrow m< 4\)
Theo hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_A+x_B=-2\\x_A.x_B=m\end{cases}}\)
\(\frac{1}{x_A^2}+\frac{1}{x_B^2}=6\Leftrightarrow\)\(\frac{x^2_A+x^2_B}{x_A^2.x_B^2}=6\Leftrightarrow\frac{\left(x_A+x_B\right)^2-2x_A.x_B}{x_A^2.x^2_B}=6\Rightarrow\frac{4-2m}{m^2}=6\Leftrightarrow6m^2+2m-4=0\Rightarrow m=-1\)hoặc \(m=\frac{2}{3}\)
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....