Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\dfrac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{4}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x\left(x-3\right)+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x-x+6}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-3}{x-3}\)
b, Ta có : \(P=\dfrac{2x-3}{x-3}=\dfrac{2x-6+3}{x-3}=2+\dfrac{3}{x-3}\)
- Để P là số nguyên \(\Leftrightarrow x-3\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{4;3;6;0\right\}\)
Vậy ...
a ĐKXĐ : \(x\ne2,x\ne3\)
\(\Rightarrow P=\dfrac{2x\left(x-3\right)+4-\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{x^2-5x+6}\)b Ta có P = \(\dfrac{2x^2-7x+6}{x^2-5x+6}=\dfrac{x^2-5x+6+x^2-2x}{x^2-5x+6}=1+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=1+\dfrac{x}{x-3}\)
Để P\(\in Z\) \(\Leftrightarrow1+\dfrac{x}{x-3}\in Z\) \(\Rightarrow\dfrac{x}{x-3}\in Z\) \(\Rightarrow x⋮x-3\) \(\Rightarrow x-3+3⋮x-3\)
\(\Rightarrow3⋮x-3\) \(\Rightarrow\left(x-3\right)\in\left\{-3;-1;1;3\right\}\) \(\Rightarrow x\in\left\{0;2;4;6\right\}\)
Thử lại ta thấy đúng
Vậy...
a)
2x-4=2(x-2)
2x+4=2(x+2)
x
Để P xác định thì
[2(x-2) => [2(x+2)
[2(x+2) =>[ 2(x-2)
[ (x-2)(x+2) => [(x+2)(x-2)
Vay 2(x+2) , 2(x-2), (x+2)(x-2) thi P xác định
a:TXĐ D=R\{2}
b: \(P=\dfrac{x^2}{x^3-8}+\dfrac{x}{x^2+2x+4}+\dfrac{1}{x-2}\)
\(=\dfrac{2x^2-2x+x^2+2x+4}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{3x^2+4}{x^3-8}\)
\(a,ĐKXĐ:x\ne\pm2\)
\(b,P=\left(\frac{x+2}{2x-4}+\frac{x-2}{2x+4}+\frac{-8}{x^2-4}\right):\frac{4}{x-2}\)
\(=\left(\frac{x+2}{2\left(x-2\right)}+\frac{x-2}{2\left(x+2\right)}+\frac{-8}{\left(x-2\right)\left(x+2\right)}\right).\frac{x-2}{4}\)
\(=\left(\frac{\left(x+2\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(-8\right).2}{2\left(x-2\right)\left(x+2\right)}\right)\)\(.\frac{x-2}{4}\)
\(=\left(\frac{x^2+4x+4+x^2-4x+4-16}{2\left(x-2\right)\left(x+2\right)}\right).\frac{x-2}{4}\)
\(=\frac{2x^2-8}{2\left(x-2\right)\left(x+2\right)}.\frac{x-2}{4}\)
\(=\frac{2\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}.\frac{x-2}{4}=1.\frac{x-2}{4}=\frac{x-2}{4}\)
1. Để A có nghĩa thì \(x^3-3x-2\ne0\)
\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)
\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2+x-2\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2-1+x-1\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left[\left(x+1\right)\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)
\(\Rightarrow\left(x-1\right)^2\left(x+2\right)\ne0\)
\(\Rightarrow x\ne1;x\ne-2\)
2. \(A=\frac{x^4-2x^2+1}{x^3-3x-2}=\frac{\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{\left(x-1\right)^2\left(x+2\right)}\)
\(=\frac{\left(x-1\right)^2.\left(x+1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left(x+1\right)^2}{x+2}\)
3/ Để A < 1 \(\Leftrightarrow\frac{\left(x+1\right)^2}{x+2}< 1\Leftrightarrow\left(x+1\right)^2< x+2\)
\(\Leftrightarrow x^2+2x+1< x+2\)
\(\Leftrightarrow x^2+x< 1\)
\(\Leftrightarrow x.\left(x+1\right)< 1\)
Vậy .....
1. A có nghĩa khi \(x^3-3x-2\ne0\)
\(\Leftrightarrow x^3+x^2-x^2-x-2x-2\ne0\)
\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-2\left(x+1\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x-2x-2\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow x-2\ne0\)(do \(\left(x+1\right)^2\ge0\)) \(\Leftrightarrow x\ne2\)
2. Ta có :
Tử = \(x^4-2x^2+1=x^4-x^3+x^3-x^2-x^2+x-x+1\)
=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+x^2-x-1\right)=\left(x-1\right)\left[x^2\left(x+1\right)-x\left(x+1\right)\right]\)
=\(\left(x-1\right)\left(x+1\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
Vậy \(A=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)
3. \(A< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Leftrightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)
\(\Leftrightarrow\frac{x^2-3x+3}{x-2}< 0\)ta có \(x^2-3x+3=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{3}{4}=\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\)(1) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)(Thỏa mãn)
Vậy x<2 thì A<1
a) P có nghĩa khi \(\hept{\begin{matrix}2x+4\ne0\\2x-4\ne0\\x^2-4\ne0\\x-2\ne0\end{matrix}}\Leftrightarrow\hept{\begin{matrix}2\left(x+2\right)\ne0\\2\left(x-2\right)\ne0\\\left(x-2\right)\left(x+2\right)\ne0\\x-2\ne0\end{matrix}\Leftrightarrow\hept{\begin{matrix}x+2\ne0\\x-2\ne0\end{matrix}}\Leftrightarrow x\ne\pm2}\)
vậy P có nghĩa khi \(x\ne\pm2\)
b) \(P=\left(\frac{x+2}{2x-4}+\frac{x-2}{2x+4}-\frac{8}{x^2-4}\right):\frac{4}{x-2}\left(x\ne\pm2\right)\)
\(\Leftrightarrow P=\left(\frac{x+2}{2\left(x-2\right)}+\frac{x-2}{2\left(x+2\right)}-\frac{8}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x-2}{4}\)
\(\Leftrightarrow P=\left[\frac{\left(x+2\right)^2}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2}{2\left(x-2\right)\left(x+2\right)}-\frac{16}{2\left(x-2\right)\left(x+2\right)}\right]\cdot\frac{x-2}{4}\)
\(\Leftrightarrow P=\left[\frac{x^2+4x+4}{2\left(x-2\right)\left(x+2\right)}+\frac{x^2-4x+4}{2\left(x-2\right)\left(x+2\right)}-\frac{16}{2\left(x-2\right)\left(x+2\right)}\right]\cdot\frac{x-2}{4}\)
\(\Leftrightarrow P=\frac{x^2+4x+4+x^2-4x+4-16}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{4}\)
\(\Leftrightarrow P=\frac{2x^2-8}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{4}=\frac{2\left(x^2-4\right)\left(x-2\right)}{8\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)\left(x-2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}=\frac{x-2}{4}\)
vậy P=\(\frac{x-2}{4}\left(x\ne\pm2\right)\)