Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi p la so nguyen to lon hoan 3 nen p co 2 dang:
\(3k+1;3k+2\) (k\(\in\) N*)
Voi p=3k+1
Ta co: 2p+1=2(3k+1)+1=6k+2+1=6k+3=3(2k+1) Voi (k\(\in\) N*) \(\Rightarrow\) 3(2k+1) chia het cho 3 va 3(2k+1)>3 \(\Rightarrow\) 3(2k+1) la hop so hay 2p+1 la hop so(loai)
Voi p=3k+2
Ta co: 4p+1=4(3k+2)+1=12k+8+1=12k+9=3(4k+3)
Voi (k\(\in\) N*) \(\Rightarrow\) 3(4k+3) chia het cho 3 va 3(4k+3)>3 \(\Rightarrow\) 3(4k+3) la hop so hay 4p+1 la hop so
Vay neu p va 2p+1 la so nguyen to (p>3)) thi 4p+1 la hop so voi p co dang 3k+2
TICK CHO MINH NHA !!!!!!!!
p nguyên tố > 3
=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguyên tố nên từ (*)
=> 5p+1 chia hết cho 3
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
hân tích 42=3.2.742=3.2.7.
Ta có P=42k+rP=42k+r.
Xét
- Nếu P=2⇒r=40 thoả mãn.
- Nếu P=3⇒r=39 thoả mãn.
- Nếu P>3, do P nguyên tố nên r không thể là các ước nguyên dương của 42, r hợp số mà r<42 nên r=25
ta có p nguyên tố
p = 42k+r
=> r UCLN(r;42) =1 và r lẻ
lại có ƯỚC 42 = 1,2,3,4,6,7,13,14,21,42
=> r không chia hết 1,2,3,4,6,7
lại có r<42 => r <7^2
r là hợp số => r= a.b <7^2
=> it nhất a or b <7, nhưng a,b # 1,2,3,4,6,7 => a hoạc b =5
r= a.b => a=b=5
=> r=25
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k\(\in\)N*)
Với p=3k+1 thì p+8=3k+1+8=3k+9=3(k+3) chia hết cho 3 ,là hợp số(trái với giả thiết)
Với p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2) chia hết cho 3,là hợp số
Vậy nếu p và p+8 là SNT lớn hơn 3 thì p+4 là hợp số