Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)
- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 \(⋮\) 3 là hợp số (loại)
- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)
=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
nhầm đề , đây là bài đúng ! ^.^
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
2/ Đặt Q(x)=P(x)-(x+1)
Q(1999)=P(1999)-(1999+1)=2000-2000=0
Q(2000)=P(2000)-(2000+1)=2001-2001=0
=>x-1999,x-2000 là các nghiệm của Q(x)
Đặt Q(x)=(x-1999)(x-2000).g(x)
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1)
=>Q(x) =(x-1999)(x-2000).( ax+b)
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1)
P(2001)=(2001-1999)(2001-2000)
(a.2001+b)+(2001+1)
=2(2001a+b)+2002
=4002a+2b+2002
P(1998)= (1998-1999)(1998-2000)(a.1998+b)
+(1998+1)
=2(a.1998+b)+1999
=3996a+2b+1999
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999
=6a+3
=3(a+2)
Do a thuộc Z,a khác -1
=>a+2 thuộc Z,a+2 khác 1
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3
=>3(a+2) là hợp số
=> P(2001) - P(1998) là hợp số
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
Bài 1
a,
Gọi d là ƯCLN(6n+5;4n+3)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\)
\(\Rightarrow12n+10-\left(12n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
b, Vì số nguyên dương nhỏ nhất là số 1
=> x+ 2016 = 1
=> x= 1-2016
x= - 2015
Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)
\(6n+5⋮d\Rightarrow12n+10⋮d\)
\(4n+3⋮d\Rightarrow12n+9⋮d\)
Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)
Vậy ta có đpcm
Xin lỗi nha máy mình ko viết đc một số dấu ,có gì sai sót mong mọi người thông cảm và sửa lại giúp mình nha!
1)Gọi ước chung lớn nhất của 2n+1 và 2n+3 là a,với a thuộc tập hợp số tự nhiên
=>2n+1:a và 2n+3:a
=>(2n+3)-(2n+1):a
=>2:a
=>a thuộc tập hợp ước của 2
=>ước của 2=(1;2)
=>a=1;2
Vì 2n:2,với n thuộc tập hợp số tự nhiên,1 /:2
=>a=1
=>(2n+1,2n+3)=1
=>2n+1 và 2n+3 là hai số nguyên tố chùng nhau
CHÚC MỌI NGƯỜI HỌC TỐT NHÉ!
1)
gọi d = (a; a+b)
=> a chia hết cho d và a+b chia hết cho d
Ta có (a+b) -a = b chia hết cho d
=> a ; b chia hết cho d =>(a;b) =d ; mà (a;b) =1 => d =1
Vậy (a;a+b) =1
2)
d =(a;a-b) => a chia hết cho d và a-b chia hết cho d
=> a - ( a -b ) = b chia hết cho d
=> (a;b) =d ; mà (a;b) = 1 => d =1
Vậy (a; a - b) =1
Giải:
Ta xét các trường hợp:
Nếu \(p=2\) thì \(p+20=22\) không là số nguyên tố (loại)
Nếu \(p=3\) thì \(\left\{{}\begin{matrix}p+20=23\\p+40=43\\p+80=83\end{matrix}\right.\) đều là số nguyên tố (chọn)
Nếu \(p>3\) thì ta có 2 dạng là \(\left[{}\begin{matrix}3k+1\\3k+2\end{matrix}\right.\)
\(*)\) Với \(p=3k+1\) ta có:
\(p+20=\left(3k+1\right)+20=3k+21\) \(=3\left(k+7\right)\)
Dễ thấy \(\left[{}\begin{matrix}3\left(k+7\right)⋮3\\3\left(k+7\right)>3\end{matrix}\right.\) \(\Rightarrow3\left(k+7\right)\) là hợp số (loại)
\(*)\) Với \(p=3k+2\) ta có:
\(p+20=\left(3k+2\right)+40=3k+42\) \(=3\left(k+14\right)\)
Dễ thấy \(\left[{}\begin{matrix}3\left(k+14\right)⋮3\\3\left(k+14\right)>3\end{matrix}\right.\) \(\Rightarrow3\left(k+14\right)\) là hợp số (loại)
Vậy với \(p=3\) thì \(p+80\) cũng là số nguyên tố (Đpcm)