Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p ko chia hét cho 3 nên p chia 3 dư 1 =>p^2-1 chia hết cho 3
p^2 chia 8 dư 0,1,4.Nhưng p nguyên tố nên p^2 chia 8 dư 1 =>p^2-1 chia hết cho 8
mà (3;8)=1 nên ta cố dpcm
\(n^2-2n-22\) \(⋮\)\(n+3\)
\(\Leftrightarrow\)\(\left(n-5\right)\left(n+3\right)-7\) \(⋮\)\(n+3\)
Ta thấy: \(\left(n-5\right)\left(n+3\right)\)\(⋮\)\(n+3\)
nên \(7\)\(⋮\)\(n+3\)
hay \(n+3\) \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n+3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-10\) \(-4\) \(-2\) \(4\)
Vậy....
Gợi ý cho bạn nhé :
+) Nếu ( 24n + 7 ) : 5 => 24n + 7 = Không có tận cùng là 0 hoặc 5 . ý là có tận cùng phải khác 0 hay 5 . Số dư bạn tự tìm nha.
+) Nếu ( 42n + 1 + 3 ) :5 => 42n + 1 + 3 = Không có tận cùng là 0 hoặc 5 . ý là có tận cùng phải khác 0 hay 5 . Số dư bạn tự tìm nha.
+) ( 74n + 2 + 6 ) :10 => 74n + 2 + 6 = Tận cùng khác 0
+) ( 34n + 3 + 24n + 2 + 2016 ) :10 => 34n + 3 + 24n + 2 + 2016 = Tận cùng khác 0
Tự luận đi nhé , bài này cũng không khó đâu
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
+) n là số nguyên tố > 5
=> n có dạng 5k + 1; 5k + 2; 5k + 3; 5k + 4
Có: ( 5k + 1)^4 và 1^4 có cùng số dư khi chia cho 5
( 5k + 2 )^4 và 2^4 có cùng số dư khi chia cho 5
( 5k + 3 )^4 và 3^4 có cùng số dư khi chia cho 5
( 5k + 4 )^4 và 4^4 có cùng số dư khi chia cho 5
mà 1^4 - 1; 2^4-1; 3^4-1 ; 4^4 - 1 chia hết cho 5
=> n^4 - 1 chia hết cho 5 với n là số nguyên tố lớn hơn 5 (1)
+) n^4 - 1 = ( n^2 - 1 ) ( n^2 + 1 ) = ( n - 1 ) ( n + 1 ) (n^2 + 1 )
n là số nguyên tố lớn hơn 5 => n là số lẻ => ( n - 1) ( n + 1 ) chia hết cho 8 ; n^2 + 1 chia hết cho 2
=> n^4 - 1 chia hết cho 16 (2)
+) n là số nguyên tố lớn hơn 5 => n có dạng 6k + 1; 6k + 5
Nếu n = 6k + 1 => n^4 - 1 = ( n - 1 ) ( n + 1 ) ( n^2 + 1 ) = 6k ( n + 1 ) ( n^2 + 1 ) chia hết cho 3
Nếu n = 6k + 5 => n^4 - 1 = ( n - 1 ) ( 6k + 6 ) ( n^2 + 1 ) = 6 ( n - 1 ) ( k + 1 ) ( n^2 + 1 ) chia hết cho 3
Vậy n^4 - 1 chia hết cho 3 với n là số nguyên tố lớn hơn 5 (3)
Từ (1); (2); (3) và 5; 16; 3 đôi 1 nguyên tố cùng nhau
=> n^4 - 1 chia hết cho tích 5.16.3
=> n^4 - 1 chia hết cho 240