Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(P=\frac{1.51}{50.2}\)
\(P=\frac{51}{100}>\frac{1}{2}\)
Kết luận: \(P>\frac{1}{2}\)
\(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{2013^2-1}{2013^2}.\frac{2014^2-1}{2014^2}\)
\(A=\frac{1.3.2.4.3.5....2012.2014.2013.2015}{2^2.3^2.4^2...2013^2.2014^2}\)
\(A=\frac{\left(1.2.3...2012.2013\right).\left(3.4.5...2014.2015\right)}{\left(2.3.4...2013.2014\right).\left(2.3.4...2013.2014\right)}\)(nhóm từng số ở trước và sau vào 2 nhóm khác nhau)
\(A=\frac{3.2015}{2014.2}\)
\(A=\frac{6045}{4028}\)
\(A=\frac{6045}{4028}\),nha bạn ,chúc bạn hok tốt ,love bạn nhìu ,cách làm giống như Monozono Nanami nha
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\)
\(=\frac{\left(1.2.3...99\right)\left(2.3.4...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=\frac{101}{100}\)
mình lam hơi sai mà cũng khá lac đề, bạn từ bài của mình mà làm bài khác đúng hơn nha hiền
M=-(\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{1-100^2}{100^2}\))
=-(\(\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}...\frac{99.100}{100.100}\))
=-(\(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...100}{2.3.4..100}\))
=-(\(\frac{1}{100}.\frac{1}{2}\))
=\(\frac{-1}{200}\)
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)
\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Vậy \(A< -\frac{1}{2}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)
\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)
\(=\frac{101}{2\cdot100}\)
\(=\frac{101}{200}>\frac{1}{2}\)
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
a) \(\left(-\frac{1}{4}\right)^0=1\)
b) \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)
c) \(\left(\frac{4}{5}\right)^{-2}=\frac{25}{16}\)
d) \(\left(0,5\right)^{-3}=8\)
e) \(\left(-1\frac{1}{3}\right)^4=\left(-\frac{4}{3}\right)^4=\frac{256}{81}\)
a, \(\left(\frac{-1}{4}\right)^0\) = 1
Bất kỳ số nguyên nào nếu có mũ bằng 0 đều bằng 1
b, \(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{49}{9}\)
\(P=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(\Rightarrow P=\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{9}{9}-\frac{1}{9}\right)\left(\frac{16}{16}-\frac{1}{16}\right)...\left(\frac{2500}{2500}-\frac{1}{2500}\right)\)
\(\Rightarrow P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(\Rightarrow P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(\Rightarrow P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(\Rightarrow P=\frac{51}{50.2}=\frac{51}{100}>\frac{50}{100}=\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Ta có:
\(P=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{50^2}\right)\)
\(P=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).....\left(1-\frac{1}{2500}\right)\)
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{2499}{2500}\)
\(P=\frac{3.8.15.....2499}{4.9.16.....2500}\)
Tới chỗ này rồi tiếp tục rút gọn
Kết quả cuối cùng là: \(P>\frac{1}{2}\)
Xin lỗi nha, tớ ko có giỏi ở phần rút gọn.