Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
\(a^2+b^2+c^2+d^2+e^2-e\left(a+b+c+d\right)\)
\(=\left(a^2-ae+\frac{1}{4}e^2\right)+\left(b^2-be+\frac{1}{4}e^2\right)+\left(c^2-ce+\frac{1}{4}e^2\right)+\left(d^2-de+\frac{1}{4}e^2\right)\)
\(=\left(a-\frac{e}{2}\right)^2+\left(b-\frac{e}{2}\right)^2+\left(c-\frac{e}{2}\right)^2+\left(d-\frac{e}{2}\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge e\left(a+b+c+d\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=\frac{e}{2}\)
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
Đặt a = a1m ; c = c1m ( a1,c1,m \(\in\) N* ; (a1,c1)=1 )
\(\Rightarrow\) a1mb = c1md
\(\Rightarrow\) a1b = c1d ( Do m \(\in\) N* )
\(\Rightarrow\) a1b \(⋮\) c1 mà (a1,c1)=1 \(\Rightarrow\) b\(⋮\) c1
CMTT: d \(⋮\) c1
Đặt b = c1n ; d = a1n ( n \(\in\) N* )
Có a5+b5+c5+d5 = a15m5+c15n5+c15m5+a15n5
= ( a15 +c15 )( n5 + m5 )
Mà\(\left\{{}\begin{matrix}a_1^5+c_1^5\ge2\\m^5+n^n\ge2\end{matrix}\right.\) ( Vì a1,c1,m,n \(\in\) N* )
\(\Rightarrow\)a5+b5+c5+d5 là tích 2 số lớn hơn 1
\(\Rightarrow\) a5+b5+c5+d5 là hợp số ( đpcm )
Lời giải:
a) Ta có:
\(a^2-b^2+c^2\geq (a-b+c)^2\)
\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)
\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)
\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)
\(\Leftrightarrow (a-b)(b-c)\geq 0\)
BĐT trên luôn đúng do \(a\geq b\geq c\)
Do đó ta có đpcm.
b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)
\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)
\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)
\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)
\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
BĐT trên luôn đúng do:
\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
Do đó ta có đpcm.