\(a^2\)+ a - p = 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

\(a^2+a-p=0\)

\(\Rightarrow a\left(a+1\right)=p\)

Vì p là số nguyên tố => p chỉ có 2 ước nguyên là 1; p

Mà \(a\left(a+1\right)=p\) => a và a + 1 là các ước của p

=> a = 1 hoặc a + 1 = 1 => a = 1 hoặc a = 0

Thử lại : với a = 1 => 1(1 + 1) = 2 là số nguyên tố (tm)

             với a = 0 => 0(0 + 1) = 0 không là số nguyên tố (loại)

Vậy a = 1

15 tháng 4 2020

Dễ vcl

DD
17 tháng 1 2021

a) \(n^2+8n+29=n^2+4n+4n+16+15=\left(n+4\right)^2+15=m^2\)

\(\Leftrightarrow m^2-\left(n+4\right)^2=15\Leftrightarrow\left(m-n-4\right)\left(m+n+4\right)=13=1.13\)

Do \(m-n-4< m+n+4\)nên ta có trường hợp: 

 \(\hept{\begin{cases}m-n-4=1\\m+n+4=13\end{cases}}\Leftrightarrow\hept{\begin{cases}m=7\\n=2\end{cases}}\)(thỏa) 

b) \(9n^2+6n+22=3\left(3n^2+n\right)+3n+1+21=\left(3n+1\right)^2+21=m^2\)

\(\Leftrightarrow m^2-\left(3n+1\right)^2=21\Leftrightarrow\left(m-3n-1\right)\left(m+3n+1\right)=21=1.21=3.7\)

Ta có các trường hợp: 

\(\hept{\begin{cases}m-3n-1=1\\m+3n+1=21\end{cases}}\Leftrightarrow\hept{\begin{cases}m=11\\n=3\end{cases}}\)(thỏa) 

\(\hept{\begin{cases}m-3n-1=3\\m+3n+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=5\\n=\frac{1}{3}\end{cases}}\)(loại)

28 tháng 1 2018

a^2+a-p=0

=> a^2+a = p

=> p = a.(a+1)

Ta thấy a;a+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> p chia hết cho 2

Mà p nguyên tố => p = 2

=> a^2+a = 2

=> a^2+a-2 = 0

=> (a^2-a)+(2a-2) = 0

=> a.(a-1)+2.(a-1) = 0

=> (a-1).(a+2) = 0

=> a-1=0 hoặc a+2=0

=> a=1 hoặc a=-2

Vậy a thuộc {-2;1}

Tk mk nha

28 tháng 1 2018

a chỉ có thể = 1

10 tháng 4 2018

 B1: n2 + 6n + 8 = n2 + 4n + 2n + 8 = n(n+4) + 2(n+4) = (n+2)(n+4)

Vì n+2 < n+4 => n + 2 = 1 => n = -1

=> A = 3 nguyên tố, thoả

B2: x + y + xy = 2

=> x(y+1) + (y+1) = 3

=> (x+1)(y+1) = 3

Ta có:

x+113-1-3
y+131-3-1
x02-2-4
y20-4-2

        Vậy (x,y) = .....................

B3: a : b = c dư r

=> 112 : b = 5 dư r

=> 112 : 5 = b dư r

=> 112 - r chia hết cho 5 và r < 5

=> r = 2 => b = 22

25 tháng 3 2018

-Nếu p là số nguyên tố chẵn => 22+p2=2*2+22=8 ( loại)

-Nếu p là số không chia hết cho 3 => 2p+p có dạng là 3k (k thuộc N) mà 2p+p2 > 3  => 2p+p2 không là số nguyên tố

-Nếu p = 3 =>2p+p2 = 17 ( thỏa mãn )

Vậy p = 3

30 tháng 9 2021

P=3 nha bạn

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)