Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:
+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.
Vậy bài toán đúng với p=2p=2
∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3
⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)
Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.
Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.
+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)
∙∙ Xét p=3p=3. Khi đó ta có:
8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.
Vậy bài toán đúng với p=3p=3
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).
Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3
⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.
Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số
Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .
* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )
* Xét : p # 3
Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .
p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p2 - 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3
\(\Rightarrow\) 8p + 1 là hợp số .
Bạn tham khảo bài của mình nhé !!
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
p là số nguyên tố lớn hơn 3=>p=3k+1;3k+2
xét p=3k+1=>8p+1=8(3k+1)+1=3.8k+8+1=3.8k+9=3(8k+3) chia hết cho 3
=>8p+1 là hợp số(trái giả thuyết)
=>p=3k+2
=>4p+1=4(3k+2)+1=3.4k+9=3(4k+3) chia hết cho 3
=>4p+1 là hợp số
=>đpcm
hợp số. vì p > 3 => p khong chia hết cho 2
=>p2 khong chia het cho 2
=> p2 + 2003 chia hết cho 2
mà p2 + 2003 khác 2
=> p2+2003 là hợp số
1. Các số đó là 2,3,5,7
2.Các số sau là hợp sô hết vì :
a) A chia hết cho 3
b) B chia hết cho 11
c) C chia hết cho 101
d) D = 1112111 = 1111000 + 1111 chia het cho 1111
e) E chia hết cho 3 vì 1! + 2! = 3 chia hết cho 3, còn 3! + ... + 100! cũng chia het cho 3
g) Số 3 . 5 . 7 . 9 - 28 chia hết cho 7
h) Số 311141111 = 311110000 + 31111 chia hết cho 31111
3. Xét p dưới dạng : 3k ( khi đó p = 3), 3k + 1, 3k + 2 ( k thuộc N ). Dạng thứ 3 ko thỏa mãn đề bài ( vì khi dó 8p - 1 là hợp số), 2 dạng trên đều cho 8p + 1 là hợp số.
4. r = 1.
a,b,c,d,g,h là hợp số
e là số nguyên tố
tớ chỉ biết làm bài 2 thôi
Xét 3 số tự nhiên liên tiếp 8p-1; 8p; 8p+1
Do tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3 nên ta có:
(8p-1).8p. (8p+1) chia hết cho 3 mà 8p và 8p-1 không thể chia hết cho 3 nên 8p+1 phải chia hết cho 3\(\Rightarrow\)8p+1 là hợp số.
Vậy 8p+1 là hợp số.
Xét 3 số tự nhiên liên tiếp 8p-1 ; 8p ; 8p +1
Do tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3 nên ta có:
(8p-1).8p.(8p+1) chia hết cho 3.
Mà 8p-1 và 8p không thể chia hết cho 3 \(\Rightarrow\)8p+1 chia hết cho 3 \(\Rightarrow\)8p+1 là hợp số.
Vậy 8p+1 là hợp số.
CC mà chế :D
Vì p là snt>3 nên p có dạng:3k+1 hoặc 3k+2 (k E N*)
+) p=3k+1. Giả sử: 8p+1 là số nguyên tố =>8p+1=24k+9 (là hợp số) nên loại
Số còn lại có lúc thì hợp số lúc thì nguyên tố
+) p=3k+2. Giả sử 8p-1 là số nguyên tố => 8p-1=24k+15 (là hợp số) nên loại
Số còn lại có lúc thì hợp số lúc thì nguyên tố
Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3