\(P^{2018}+2018\)là hợp số hay số nguyên tố">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

là hợp số 

29 tháng 12 2017

Ta có : p2018= p.p.p.p.....p ( 2018 thừa số p )

Mà nhiều thừa số nguyên tố nhân với nhau nên p2018 là hợp số và 2018 cũng là hợp số

Vậy p2018 + 2018 là hợp số .

13 tháng 4 2018

p nguyên tố lớn hơn 3 

=>p không chia hết cho 3

=>p^2016 không chia hết cho 3

=>p^2016 chia 3 dư 1 hoặc dư 2

+) p^2016 chia 3 dư 1

=>p^2016+2018 chia hết cho 3

Mà p^2016+2018 > 3

=>p^2016+2018 là hợp số

+)p^2016 chia 3 dư 2

=>...

...

=>p^2016+2018 là số nguyên tố

Vậy  p^2016+2018 có thể là số nguyên tố hoặc hợp số

22 tháng 3 2022

VỪA LÀ SNT VỪA LÀ HỢP SỐ

 

30 tháng 1 2020

a, Số dư luôn <3

10 tháng 4 2021

hợp số

10 tháng 4 2021

cách giải

26 tháng 5 2016

Đặt n2 + 2006 = a2 (a Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (kN*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

26 tháng 5 2016

n là số nguyên tố lớn hơn 3 => n2 đồng dư với 1 (mod 3)

n2+2006 đồng dư với 1+2006 (mod 3)

<=> n+ 2006 đồng dư với 2007 (mod 3) đồng dư với 0 (mod 3) (*Vì 2007 chia hết 3*)

=> n2 +2006 chia hết 3

Vậy n2 +2006 là hợp số

21 tháng 12 2021

số ........ tố               bạn đoán xem là gì

21 tháng 12 2021

p là số nguyên tố lớn hơn 3 => p không chia hết cho 3 => p1009 không chia hết cho 3

Mà một số chính phương khi chia 3 chỉ có thể dư 0 hoặc 1 => p2018 = (p1009)2 khi chia 3 dư 1

Ta có 2018 khi chia 3 dư 2 => p2018 + 2018 chia hết cho 3

Mặt khác p2018 + 2018 > 3, nên p2018 + 2018 là hợp số.

31 tháng 1 2018

do số chính phương khi chia cho 3 có số dư là 0 hoặc 1 mà n là số nguyên tố nên n^2 có dạng 3k+1

Ta có:n^2+2018=3k+1+2018=3k+2019

do 3k chia hết cho 3,2019chia hết cho 3

nên 3k+2019 là hợp số hay n^2+2018 là hợp số

Vậy không có số nguyên tố n nào thỏa mãn đề bài 

1 tháng 5 2018

- Vì n là số nguyên tố lớn hơn 3 =) n là số lẻ 
Mà n^2 = n.n = số lẻ . số lẻ = số lẻ
Mà 2015 cũng là số lẻ 
=) n^2+2015=số lẻ + số lẻ = số chẵn chia hết cho 2
Vậy n^2+2015 chia hết cho 1 , 2  và chia hết cho chính nó 
=) n^2+2015 nhiều hơn 2 ước =) Là hợp số 

1 tháng 5 2018

Vì n là số nguyên tố lớn hơn 3

=> n không chia hết cho 3

=> n2 chia 3 dư 1

=> n2 = 3k + 1 ( k \(\inℕ^∗\))

=> n2 + 2015 = 3k + 1 + 2015 = 3k + 2016

Mà \(\hept{\begin{cases}3k⋮3\\2016⋮3\end{cases}}\)=> n+ 2015 là hợp số.