K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

hay p-1 và p+1 là số chẵn

hay \(\left(p-1\right)\left(p+1\right)⋮8\)

Vì p là số nguyên tố lớn hơn 3 nên p=3k+1(k∈N) hoặc p=3k+2(k∈N)

Khi p=3k+1 thì \(\left(p-1\right)\left(p+1\right)=\left(3k+1-1\right)\left(3k+1+1\right)=3k\left(3k+2\right)⋮3\)

Khi p=3k+2 thì \(\left(p-1\right)\left(p+1\right)=\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\cdot3\cdot\left(k+1\right)⋮3\)

hay Với p là số nguyên tố lớn hơn 3 nên \(\left(p-1\right)\left(p+1\right)⋮3\)

Ta có: \(\left(p-1\right)\left(p+1\right)⋮3\)(cmt)

\(\left(p-1\right)\left(p+1\right)⋮8\)(cmt)

mà (3;8)=1

nên \(\left(p-1\right)\left(p+1\right)⋮3\cdot8=24\)(đpcm) 

16 tháng 1 2021

Theo đb ta có: P là nguyên tố lớn hơn  3

Suy ra: P không chia hết cho 2 và 3

Ta lại có: P không chia hết cho 2 

Suy ra: (P-1) và (P+1) là hai số chẵn liên tiếp nhau

Suy ra: (P-1).(P+1) chia hết cho 8  (*)

14 tháng 12 2016

A = p2 - 1 = (p - 1)(p + 1)

p là số nguyên tố > 3 => p lẻ => p-1; p+1 chẵn => A chia hết cho 8 với mọi p là số nguyên tố > 3 (1)

p là số nguyên tố > 3 => p = 3k+1; 3k + 2

+) p= 3k+1 => A = 3k(3k+2) chia hết cho 3

+) p = 3k+2 => A = (3k+1)(3k+3) = 3(k+1)(3k+1) chia hết cho 3

=> A chia hết cho 3 với mọi p là số nguyên tố > 3 (2)

8 và 3 là 2 số nguyên tố cùng nhau (3)

Từ (1); (2); (3) => A chia hết cho 24 với mọi p là số nguyên tố lớn hơn 3 (đpcm)

 

31 tháng 10 2016

Có: p2 - 1 = p2 + p - p - 1 = (p2+p) - (p+1) = p(p+1) - (p+1) = (p-1).(p+1)

  • p là số nguyên tố lớn hơn 3 => p-1 và p+2 là 2 số chẵn liên tiếp.=> (p-1)(p+1) \(⋮\) 8 (1)
  • p là số nguyên tố lớn 3 => p có dạng 3k+1;3k+2

Với p = 3k+1 => (p-1)(p+1) = (3k+1-1)(3k+2+1) = 3k(p+1) \(⋮\) 3 (2)

Với p = 3k+2 => (p-1)(p+1) = (p-1)(3k+2+1) = (p-1)(k+1).3 \(⋮\) 3 (3)

Từ (1)(2)(3) => p2 - 1 \(⋮\) 3;8

Mà (3;8) = 1 => p2 - 1 \(⋮\) 24

31 tháng 10 2016

lớp 9 học Hđt r` p2-12=(p-1)(p+1) luôn, cách làm k phù hợp vs lừa tuổi

16 tháng 6 2015

BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5 

Ta có P8n+3P4n-4 = p4n(p4n+3) -4 

Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1 

( cách chứng minh là đồng dư hay tìm chữ số tận cùng )

suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5

Bài 5

Ta xét :

Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)

Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)

suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)

Từ (1) và (2) suy ra 4p+1 là hợp số 

9 tháng 6 2016

Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại

+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn

+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)

=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3

Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.

Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3

Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại

Vậy n = 3

Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)

Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8

Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5

9 tháng 7 2019

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

11 tháng 6 2017

Vì p nguyên tố > 3 

=> p \(̸⋮\)3

=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]

Lại có: 2017 chia 3 dư 1

=> 2017 - p2 \(⋮3\)

Tương tự như trên, ta có:

p nguyên tố > 3 

=> p lẻ và p không chia hết cho 8

=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]

Lại có: 2017 chia 8 dư 1

=> 2017 - p2 \(⋮\)8

Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24

11 tháng 6 2017

câu 2 chuyên HN 2017-2018 

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)