Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(2^n-1\) là số nguyên tố nên tổng các ước của \(2^n-1\) là \(1+2^n-1\)
tổng các ước của \(2^{n-1}\left(2^n-1\right)\) là \(\displaystyle\Sigma ^{n-1}_{i=0}(2^i)\times (1+2^n-1)\)\(=\left(2^n-1\right)\times2^n=2\left[2^{n-1}\left(2^n-1\right)\right]\)
Vậy số đã cho là số hoàn hảo
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)
b: A={2;3;5}
B={1;4;6}
Kiên nói: “Số 23 là số nguyên tố” là mệnh đề đúng
Cường nói: “Số 23 không là nguyên tố” là mệnh đề sai.
Hai phát biểu này cùng nói về một nội dung nhưng hai ý kiến trái ngược nhau, trong đó phát biểu của Kiên là đúng, phát biểu của Cường là sai.
Lời giải:
Phản chứng. Giả sử tồn tại số nguyên tố $p$ nào đó để $8p-1, 8p+1$ cùng là số nguyên tố.
Nếu $p=3$ thì $8p+1$ không phải số nguyên tố (trái giả sử)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
Khi đó $8p+1=8(3k+1)+1=3(8k+3)\vdots 3$. Mà $8p+1>3$ nên $8p+1$ không thể là số nguyên tố (trái với giả sử)
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
Khi đó $8p-1=8(3k+2)-1=3(8k+5)\vdots 3$. Mà $8p-1>3$ nên không thể là số nguyên tố (trái với giả sử)
Suy ra điều giả sử là sai, tức là $8p-1,8p+1$ không thể đồng thời là snt với $p$ nguyên tố.