\(\frac{3}{5.7}\)+\(\frac{3}{7.9}\)+........+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

=> A= \(\frac{3}{2}\) .( \(\frac{1}{5}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - \(\frac{1}{9}\) +...+ \(\frac{1}{59}\) - \(\frac{1}{61}\))

=> A=\(\frac{3}{2}\) . (\(\frac{1}{5}\) - \(\frac{1}{61}\) ) => A= \(\frac{3}{2}\)\(\frac{56}{305}\) = \(\frac{84}{305}\) Vậy A= \(\frac{84}{305}\)

4 tháng 5 2016

\(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

    \(=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

    \(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{61}\right)\)

    \(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)

    \(=\frac{3}{2}.\frac{56}{305}\)

    \(=\frac{84}{305}\)

11 tháng 5 2018

M=3.(\(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-....+\frac{1}{59}-\frac{1}{60}\)\(\frac{1}{61}\))

M= 3.(\(\frac{1}{5}-\frac{1}{61}\))

M=\(\frac{168}{305}\)

11 tháng 5 2018

\(M=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

\(M=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(M=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(M=\frac{84}{305}\)

2 tháng 4 2017

biểu thức trên =\(\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{56}-\frac{1}{61}\right)=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{1}{2}x\frac{61}{305}=\frac{1}{10}=0,1.\)

vậy biểu thức trên =0,1

10 tháng 3 2019

\(\frac{2}{3}A=\frac{2}{3}.\left(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\right)\)

\(\frac{2}{3}A=\frac{2.3}{3.5.7}+\frac{2.3}{3.7.9}+...+\frac{2.3}{3.59.61}\)

\(\frac{2}{3}A=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\)

\(\frac{2}{3}A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)

\(\frac{2}{3}A=\frac{1}{5}-\frac{1}{61}\)

\(\frac{2}{3}A=\frac{56}{305}\)

\(A=\frac{56}{305}.\frac{3}{2}\)

\(A=\frac{84}{305}\)

17 tháng 3 2015

dễ ợt

A= 1/5-1/61= 56/305

29 tháng 6 2020

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{\left(2.3.4.5\right).\left(2.3.4.5\right)}{\left(1.2.3.4\right).\left(3.4.5.6\right)}=\frac{5.2}{1.6}=\frac{5}{3}\)

C = \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{74}{305}\)

29 tháng 6 2020

Bài làm:

1) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

2) \(B=\frac{2^2.3^2.4^2.5^2}{1.2.3^2.4^2.5.6}=\frac{2.5}{6}=\frac{5}{3}\)

3) \(C=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

\(C=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{61-59}{59.61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(C=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)

NV
13 tháng 5 2020

\(A=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{84}{305}\)

6 tháng 5 2017

Ta có:\(\frac{4}{5.7}+\frac{4}{7.9}+.....+\frac{4}{59.61}\)

\(\Rightarrow2.\left(\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{59.61}\right)\)

\(\Rightarrow2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\right)\)

\(\Rightarrow2.\left(\frac{1}{5}-\frac{1}{61}\right)\)

\(\Rightarrow\frac{112}{305}\)

6 tháng 5 2017

\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)

\(=\frac{4.2}{5.7.2}+\frac{4.2}{7.9.2}+...+\frac{4.2}{59.61.2}\)

\(=\frac{4}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

\(=\frac{4}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}_{ }\right)\)

\(=\frac{4}{2}.\left(\frac{1}{5}-\frac{1}{60}\right)\)

\(=\frac{4}{2}.\frac{11}{60}\)

\(=\frac{11}{30}\)

1 tháng 4 2018

\(C=\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\)

\(\Rightarrow\frac{2}{3}C=\frac{2}{3}\cdot\left(\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\right)\)

\(\Rightarrow\frac{2}{3}C=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{47\cdot49}\)

\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)

\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{49}\)

\(\Rightarrow\frac{2}{3}C=\frac{46}{147}\)

\(\Rightarrow C=\frac{46}{147}:\frac{2}{3}\)

\(\Rightarrow C=\frac{23}{49}\)

1 tháng 4 2018

3/3.5+3/5.7+3/7.9+.....+3/47.49

=1-1/5+1/5-1/7+...+1/47-1/49

=1-1/49

=48/49

17 tháng 4 2019

\(=\frac{1}{5}-\frac{1}{61}=\frac{56}{305}\)

17 tháng 4 2019

\(S=\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\)

\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)

\(S=\frac{1}{5}-\frac{1}{61}\)

\(S=\frac{61}{305}-\frac{5}{305}\)

\(S=\frac{56}{305}\)