\(\dfrac{x-2\sqrt{x}+22}{\sqrt{x}+3}\)

1) Tính x khi P =4

2)Tìm GTNN c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: P=4

nên \(x-2\sqrt{x}+22=4\sqrt{x}+12\)

\(\Leftrightarrow x-6\sqrt{x}+10=0\)(Vô lý)

3) Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}-2\left(\sqrt{2}-1\right)+22}{\sqrt{2}-1+3}\)

\(=\dfrac{3-2\sqrt{2}-2\sqrt{2}+2+22}{2+\sqrt{2}}\)

\(=\dfrac{27-4\sqrt{2}}{2+\sqrt{2}}\)

\(=\dfrac{\left(27-4\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\sqrt{2}}\)

\(=\dfrac{\left(27\sqrt{2}-8\right)\left(\sqrt{2}-1\right)}{2}\)

\(=\dfrac{54-27\sqrt{2}-8\sqrt{2}+8}{2}\)

\(=\dfrac{64-35\sqrt{2}}{2}\)

31 tháng 7 2018

hình như đề bài bị sai số thì phải bạn ạ

mình giải cứ bị lệch số ấy

9 tháng 11 2017

Câu 3

a, ĐKXĐ: x>0, x\(\ne\)4

M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:

M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)

= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)

= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)

Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)

c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)

<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)

<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)

Vì 2>0 <=> \(\sqrt{x}-2< 0\)

<=> \(\sqrt{x}< 2\)

<=> x<4

Vậy để M<1 thì 0<x<4

<=>

9 tháng 11 2017

Câu 2

a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))

<=> \(\sqrt{3x+2}=\sqrt{25}\)

<=> 3x+2=25

<=> 3x= 23

<=> x=\(\dfrac{23}{3}\)

Vậy S= \(\left\{\dfrac{23}{3}\right\}\)

Bài 1: 

a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)

Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)

 

a: \(P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)

b: Khi \(x=7-4\sqrt{3}\) vào P, ta được:

\(P=\dfrac{7-4\sqrt{3}+16}{2-\sqrt{3}+3}=\dfrac{23-4\sqrt{3}}{5-\sqrt{3}}\)

16 tháng 8 2016

a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)

                  Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)

                  Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x+16}{\sqrt{x}+3}\)

                   thay  \(x=7-4\sqrt{3}\) vào Q ta được

                       Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)

                                                                  =\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)

                                                                  =\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)

20 tháng 10 2020

Bài 1 : 

+) ĐKXĐ  : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a) Ta có : 

\(x=4-2\sqrt{3}\)

\(\Leftrightarrow x=3-2\sqrt{3}+1\)

\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ ) 

Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là : 

\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)

b) 

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Ta có :

\(P=A:B\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)

c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)

Dấu bằng xảy ra 

\(\Leftrightarrow-\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )

Vậy không tìm được giá trị nào của x để P đạt GTNN

10 tháng 10 2020

\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)

ĐK : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne4\end{cases}}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-\sqrt{x}-2\sqrt{x}+2}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{1}{\sqrt{x}-2}\)

b) Để P < 1

=> \(\frac{1}{\sqrt{x}-2}< 1\)

<=> \(\frac{1}{\sqrt{x}-2}-1< 0\)

<=> \(\frac{1}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)

<=> \(\frac{1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

<=> \(\frac{3-\sqrt{x}}{\sqrt{x}-2}< 0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}3-\sqrt{x}>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}>-3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x< 4\end{cases}}\Leftrightarrow x< 4\)

2. \(\hept{\begin{cases}3-\sqrt{x}< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}< -3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x>4\end{cases}}\Leftrightarrow x>9\)

Kết hợp với ĐK => Với \(\orbr{\begin{cases}x\in\left\{0;2;3\right\}\\x>9\end{cases}}\)thì thỏa mãn đề bài

28 tháng 7 2016

a, Q = \(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right)\times\frac{\sqrt{x}-3}{2}\)

        = \(\left[\frac{\left(\sqrt{x}-3\right)^2+\left(\sqrt{x}+3\right)^2+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)

        = \(\left[\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\times\frac{\sqrt{x}-3}{2}\)

        = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\frac{\sqrt{x}-3}{2}\)

        = \(\frac{2\left(x+16\right)\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

        = \(\frac{x+16}{\sqrt{x}+3}\)

Thay  \(x=7-4\sqrt{3}\)  vào Q ta được:

    Q= \(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\)  = \(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2}+3}\)=\(\frac{23-4\sqrt{3}}{2+3-\sqrt{3}}=\frac{23-4\sqrt{3}}{5-\sqrt{3}}=\frac{\left(23-4\sqrt{3}\right)\left(5+\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\) =\(\frac{103+3\sqrt{3}}{22}\)

b, 

\(Q=\frac{x+16}{\sqrt{x}+3}=\frac{x+9+7}{\sqrt{x}+3}=2+\frac{7}{\sqrt{x}+3}\)

Ta có \(2+\frac{7}{\sqrt{x}+3}\)  nhỏ nhất khi \(\sqrt{x}+3\) nhỏ nhất 

 Mà  với điều kiện \(x\ge0\) nên GTNNQ=\(2+\frac{7}{3}=\frac{13}{3}\)

28 tháng 7 2016

Hỏi đáp Toán