Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đkxđ a>=0 a khác 1
\(C=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(C=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+3}{a-1}\)
\(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
b)
\(a=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\sqrt{a}=\sqrt{3}-1\)
thay vào nha
c) \(C=\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
để c<0 thì \(\frac{\left(a-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)
mà \(\sqrt{a}\left(\sqrt{a}+3\right)>0\)
\(\left(a-1\right)\left(\sqrt{a}+1\right)< 0\)
mà \(\sqrt{a}+1>0\)
nên a-1<0
\(0\le a< 1\)
ĐKXĐ: ...
\(D=\left(\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\frac{1}{\sqrt{x-1}}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\left(\frac{x+1}{x+\sqrt{x}+1}\right)\)
\(=\frac{\left(2\sqrt{x}-x-1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{\left(x+1\right)}{\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{1-\sqrt{x}}{x+\sqrt{x}+1}\)
b/ Do \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\) Để \(D>0\Leftrightarrow1-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 1\Rightarrow0\le x< 1\)
ĐKXĐ:...
\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)
\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)
\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
a) \(K=2\left(\dfrac{1}{\sqrt{a-1}}-\dfrac{1}{\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a^2-a}\)
\(=2\cdot\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\cdot\dfrac{a^2-a}{\sqrt{a}-1}\)
\(=2\cdot\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\cdot\dfrac{a^2-a}{\sqrt{a}-1}\)
\(=2\cdot\dfrac{1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}\cdot\dfrac{a^2-a}{\sqrt{a}-1}\)
\(=\dfrac{2\left(a^2-a\right)}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)^2}\)
\(=\dfrac{2a^2-2a}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)^2}\)
\(=\dfrac{\left(2a^2-2a\right)\sqrt{a}}{a\cdot\left(a-2\sqrt{a}+1\right)}\)
\(=\dfrac{a\cdot\left(2a-2\right)\sqrt{a}}{a\cdot\left(a-2\sqrt{a}+1\right)}\)
\(=\dfrac{\left(2a-2\right)\sqrt{a}}{a-2\sqrt{a}+1}\)
\(=\dfrac{2a\sqrt{a}-2\sqrt{a}}{a-2\sqrt{a}+1}\)
a) Ta có: \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\cdot\left(\dfrac{1}{\sqrt{a}}+1\right)\)
\(=\left(\dfrac{1+\sqrt{a}-\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\left(\dfrac{1}{\sqrt{a}}+\dfrac{\sqrt{a}}{\sqrt{a}}\right)\)
\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\dfrac{1+\sqrt{a}}{\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}\left(1-\sqrt{a}\right)}\)
\(=\dfrac{2}{1-\sqrt{a}}\)
b) Để \(P^2=P\) nên \(P^2-P=0\)
\(\Leftrightarrow P\left(P-1\right)=0\)
\(\Leftrightarrow P-1=0\)(Vì \(P\ne0\forall a\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow P=1\)
\(\Leftrightarrow\dfrac{2}{1-\sqrt{a}}=1\)
\(\Leftrightarrow1-\sqrt{a}=2\)
\(\Leftrightarrow\sqrt{a}=-1\)(Vô lý)
Vậy: Không có giá trị nào của P để \(P^2=P\)