K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

1

undefined

AH
Akai Haruma
Giáo viên
28 tháng 1 2018

Lời giải:

Câu 1)

Ta có: \(A_n=n^3+3n^2-n-3=n^2(n+3)-(n+3)\)

\(A_n=(n^2-1)(n+3)=(n-1)(n+1)(n+3)\)

Do $n$ lẻ nên đặt \(n=2k+1\)

\(A_n=(n-1)(n+1)(n+3)=2k(2k+2)(2k+4)\)

\(A_n=8k(k+1)(k+2)\)

Do \(k,k+1,k+2\) là ba số tự nhiên liên tiếp nên tích của chúng chia hết cho $3$

\(\Rightarrow A_n=8k(k+1)(k+2)\vdots 3(1)\)

Mặt khác \(k,k+1\) là hai số tự nhiên liên tiếp nên \(k(k+1)\vdots 2\)

\(\Rightarrow A_n=8k(k+1)(k+2)\vdots (8.2=16)(2)\)

Từ \((1); (2)\) kết hợp với \((3,16)\) nguyên tố cùng nhau nên

\(A_n\vdots (16.3)\Leftrightarrow A_n\vdots 48\)

Ta có đpcm.

Bài 2:

\(A_n=2n^3+3n^2+n=n(2n^2+3n+1)\)

\(A_n=n[2n(n+1)+(n+1)]=n(n+1)(2n+1)\)

Vì \(n,n+1\) là hai số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow A_n\vdots 2(1)\)

Bây giờ, xét các TH sau:

TH1: \(n=3k\Rightarrow A_n=3k(n+1)(2n+1)\vdots 3\)

TH2: \(n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3\)

\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)

TH3: \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)

\(\Rightarrow A_n=n(n+1)(2n+1)\vdots 3\)

Vậy trong mọi TH thì \(A_n\vdots 3(2)\)

Từ (1); (2) kết hợp với (2,3) nguyên tố cùng nhau suy ra \(A_n\vdots 6\)

Ta có đpcm.

31 tháng 3 2017

a) Vừa nhìn đề biết ngay sai

Sửa đề:

Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)

Giải:

Ta có:

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)

\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)

\(=5a-3b+2c=0\)

\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\)\(P^2\left(-2\right)\ge0\)

Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)

b) Giải:

Từ giả thiết suy ra:

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có:

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)

31 tháng 3 2017

a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c

P(2) = a.\(2^2\)+b.2+c = 4a+2b+c

=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0

<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)

Nếu P(1) = P(2) => P(1).P(2) = 0

Nếu P(1) = -P(2) => P(1).P(2) < 0

Vậy P(1).P(2)\(\le\)0

b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)

\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)

Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

15 tháng 4 2019

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

(kết luận)

29 tháng 12 2019

đề chắc sai rồi. P phải \(\ge\)0 với mọi x chứ

vì 2x4 + 3x2 + 1 > 0 ; -2x4 - x2 - 1 < 0

\(\Rightarrow\)| 2x4 + 3x2 + 1 | = 2x4 + 3x2 + 1 ; | -2x4 - x2 - 1 | = 2x4 + x2 + 1

Nên P = 2x4 + 3x2 + 1 - ( 2x4 + x2 + 1 ) = 2x2 \(\ge\)0 với mọi x