\([\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu

5 tháng 2 2022

Trả lời:

a, \(B=\left(\frac{x+\sqrt{x}-1}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}\right)^3-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b, \(B< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)

\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

Vì  \(-\left(\sqrt{x}-1\right)^2< 0\) với mọi \(x>0;x\ne1\)

      \(3\left(x+\sqrt{x}+1\right)>0\) với mọi  \(x>0;x\ne1\)

\(\Rightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)  luôn đúng với mọi \(x>0;x\ne1\)

Vậy \(B< \frac{1}{3}\)

c, \(B=\frac{1}{2\sqrt{x}+1}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{2\sqrt{x}+1}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=x+\sqrt{x}+1\)

\(\Leftrightarrow2x+\sqrt{x}=x+\sqrt{x}+1\)

\(\Leftrightarrow x=1\) (tm)

Vậy x = 1 là giá trị cần tìm 

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)