Cho P = (1-\(\dfrac{1}{1+2}\)) (1-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 6 2023

Lời giải:

Xét thừa số tổng quát:
\(1-\frac{1}{1+2+...+n}=\frac{(1+2+...+n)-1}{1+2+...+n}=\frac{\frac{n(n+1)}{2}-1}{\frac{n(n+1)}{2}}=\frac{n(n+1)-2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}\)

Thay $n=2,3,....,$ ta được:

\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{(n-1)(n+2)}{n(n+1)}\)

\(=\frac{[1.2.3....(n-1)][4.5.6..(n+2)]}{(2.3.4..n)[3.4.5...(n+1)]}\)

\(=\frac{1}{n}.\frac{n+2}{3}=\frac{n+2}{3n}\)

\(\frac{1}{P}=\frac{3n}{n+2}\in\mathbb{Z}\) khi mà $3n\vdots n+2$

$\Leftrightarrow 3(n+2)-6\vdots n+2$

$\Leftrightarrow 6\vdots n+2$

$\Rightarrow n+2\in\left\{6\right\}$ (do $n+2\geq 4$ với mọi $n\geq 2$)

$\Rightarrow n=4$

 

 

 

18 tháng 9 2017

a/ Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...........+\dfrac{1}{n^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.......................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)

\(\Leftrightarrow A< 1\)

b/ Ta có :

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.................+\dfrac{1}{\left(2n\right)^2}\)

\(=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\right)\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.........+\dfrac{1}{\left(n-1\right)n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{2}-\dfrac{1}{4n}< \dfrac{1}{2}\)

\(\Leftrightarrow B< \dfrac{1}{2}\)

19 tháng 9 2017

\(\)\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(A< 1-\dfrac{1}{n}< 1\)

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2n^2}\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B=\dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B< \dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{\left(n-1\right)n}\right)\)

Bài 1: a, Chứng tỏ rằng với n thuộc N, n khác 0 thì: \(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\) b, Áp dụng kết quả ở câu a để tính nhanh: A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{9.10}\) Bài 2: Tính nhanh: C=\(\dfrac{1}{2}\)+\(\dfrac{1}{14}\)+\(\dfrac{1}{35}\)+\(\dfrac{1}{65}\)+\(\dfrac{1}{104}\)+\(\dfrac{1}{152}\) Bài 3: a, Cho 2 phân số...
Đọc tiếp

Bài 1:

a, Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\dfrac{1}{n\left(n+1\right)}\)=\(\dfrac{1}{n}\) - \(\dfrac{1}{n+1}\)

b, Áp dụng kết quả ở câu a để tính nhanh:

A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{9.10}\)

Bài 2: Tính nhanh:

C=\(\dfrac{1}{2}\)+\(\dfrac{1}{14}\)+\(\dfrac{1}{35}\)+\(\dfrac{1}{65}\)+\(\dfrac{1}{104}\)+\(\dfrac{1}{152}\)

Bài 3:

a, Cho 2 phân số \(\dfrac{1}{n}\)\(\dfrac{1}{n+1}\) (n thuộc Z, n > 0). Chứng tỏ rằng tích của 2 phân số này bằng hiệu của chúng.

b, Áp dụng kết quả trên để tính giá trị các biểu thức sau:

A=\(\dfrac{1}{2}\) . \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) . \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) . \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) . \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) . \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) . \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) . \(\dfrac{1}{9}\)

B=\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)

Các bạn giúp mk với nha!vui

4
18 tháng 3 2017

Bài 1:

a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

Quy đồng \(VP\) ta được:

\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)

\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow VP=VT\)

Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

18 tháng 3 2017

Bài 3:

a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{9}\)

\(=\dfrac{7}{18}\)

B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)

\(=\dfrac{1}{5}-\dfrac{1}{12}\)

\(=\dfrac{7}{60}\)

19 tháng 3 2017

a,Vế trái:

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{2009}+...+\dfrac{1}{2014}\)

b,chưa có câu trả lời, sorry nhaleu

19 tháng 3 2017

Thanks.

8 tháng 9 2017

Bài 1:

a, \(\left(x-2\right)^2=9\)

\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)

b, \(\left(3x-1\right)^3=-8\)

\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)

\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)

d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)

\(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)

e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)

\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)

f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\)\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!

Câu 1: 

a: ĐKXĐ: x+5<>0

hay x<>-5

b: ĐKXĐ: x-2<>0

hay x<>2

9 tháng 5 2018

bạn chép gì vậy????hay là não bạn có vấn đề?

1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3

=>x=-16/3:7/3=-7/16

2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35

=>|x-2|=129/35

=>x-2=129/35 hoặc x-2=-129/35

=>x=199/35 hoặc x=-59/35

8 tháng 4 2017

à mk nhầm thay 50 * b thành a nha

23 tháng 5 2017

Đề sai à???

Đáng ra phải là \(\dfrac{A}{B}\) chứ???

Với cả nếu muốn CM biểu thức ko là số tự nhiên thì chỉ cần có 1 biểu thức thui chứ nhỉ, cần j 2???

16 tháng 4 2017

1) \(19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12}\)

\(=\dfrac{157}{8}\cdot\dfrac{12}{7}-\dfrac{61}{4}\cdot\dfrac{12}{7}\\ =\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)\\ =\dfrac{12}{7}\cdot\dfrac{35}{8}\\ =\dfrac{15}{2}\)

2) \(\dfrac{2}{5}\cdot\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}\cdot\dfrac{1}{3}\)

\(=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}\cdot5\\ =\dfrac{1}{3}\cdot1-\dfrac{2}{3}\\ =\dfrac{1}{3}-\dfrac{2}{3}\\ =-\dfrac{1}{3}\)

3) \(\dfrac{4}{9}\cdot19\dfrac{1}{3}-\dfrac{4}{9}\cdot39\dfrac{1}{3}\)

\(=\dfrac{4}{9}\left(19\dfrac{1}{3}-39\dfrac{1}{3}\right)\\ =\dfrac{4}{9}\cdot\left(\dfrac{58}{3}-\dfrac{118}{3}\right)\\ =\dfrac{4}{9}\cdot\left(-20\right)\\ =-\dfrac{80}{9}\)